分析 (1)由Sn=an-1(a>0,且a≠1),可得當(dāng)n=1時(shí),a1=a-1,a2=S2-S1.可得等比數(shù)列{an}的公比q=$\frac{{a}_{2}}{{a}_{1}}$.由于6a1,a3,a2成等差數(shù)列,可得6a1+a2=2a3,代入即可得出.
(2)bn=$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=$2(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})$.利用“裂項(xiàng)求和”即可得出.
解答 解:(1)∵Sn=an-1(a>0,且a≠1),∴當(dāng)n=1時(shí),a1=a-1,a2=S2-S1=(a2-1)-(a-1)=a(a-1).
∴等比數(shù)列{an}的公比q=$\frac{{a}_{2}}{{a}_{1}}$=a.∵6a1,a3,a2成等差數(shù)列,∴6a1+a2=2a3,6a1+a1a=$2{a}_{1}{a}^{2}$,化為2a2-a-6=0,a>0,解得a=2.∴an=2n-1.
(2)bn=$\frac{{a}_{n+1}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=$2(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})$.
∴Tn=$2[(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})]$=2$(\frac{1}{2}-\frac{1}{{2}^{n}+1})$=$\frac{{2}^{n}-1}{{2}^{n}+1}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=5-17x | B. | $\widehat{y}$=-17+5x | C. | $\widehat{y}$=17+5x | D. | $\widehat{y}$=17-5x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 225 | B. | 345 | C. | 350 | D. | 535 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤-4 | B. | a≤-2 | C. | a≥-2 | D. | a>-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com