如圖,正三棱柱ABC―A1B1C1的底面邊長為a,側(cè)棱長為,點D在棱A1C1上.

   (1)若A1D=DC1,求證:直線BC1//平面AB1D

   (2)若A1D=,求二面角A1AB1D的大小.

(1)證明:連A1B和AB,交于M,則M為A1B的中點,連DM,則在△ABC1中DM//BG,

∴BG//平面AB1D

(2)作DP⊥A1B1,則DP⊥面A1AB1,

作PN=AB1連DN則由三垂線定理可知∠DNP為二面角A­1―AB1―D的平面角.

設(shè)A1D=x,則DP=

二面角大小為arctan2。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點.
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點,則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點O為AB1上的動點,當(dāng)OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點.
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大。

查看答案和解析>>

同步練習(xí)冊答案