【題目】已知函數(shù)滿足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是___________.
【答案】
【解析】
由題意,把在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)與的圖象在區(qū)間內(nèi)有4個(gè)不同的交點(diǎn),作出函數(shù)的圖象,結(jié)合圖象,分類討論,即可求解,得到答案.
由題意,函數(shù)滿足,即,即函數(shù)是以6為周期的周期函數(shù),
又由在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,
即在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,
即函數(shù)與的圖象在區(qū)間內(nèi)有4個(gè)不同的交點(diǎn),
又由函數(shù),作出函數(shù)的圖象,如圖所示,
由直線,可知直線恒過(guò)點(diǎn),
當(dāng)時(shí),此時(shí)直線與函數(shù)的圖象恰有4個(gè)交點(diǎn),
當(dāng)直線過(guò)點(diǎn)時(shí),此時(shí),即,此時(shí)函數(shù)與直線有5個(gè)同的交點(diǎn),
當(dāng)直線與半圓相切時(shí),此時(shí)圓心到直線的距離等于圓的半徑,即,解得或(舍去),此時(shí)函數(shù)與直線有3個(gè)同的交點(diǎn),
此時(shí)函數(shù)與直線恰有4個(gè)同的交點(diǎn),則
綜上可知,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個(gè)年級(jí)各抽取10名志愿者參賽。在規(guī)定時(shí)間內(nèi),他們檢索到的圖書冊(cè)數(shù)的莖葉圖如圖所示,規(guī)定冊(cè)數(shù)不小于20的為優(yōu)秀.
(Ⅰ) 從兩個(gè)年級(jí)的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;
(Ⅱ) 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),問(wèn)是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)作一直線與雙曲線相交于、兩點(diǎn),若為中點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為的等比數(shù)列的前n項(xiàng)和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于概率和統(tǒng)計(jì)的幾種說(shuō)法:①10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為,中位數(shù)為,眾數(shù)為,則,,的大小關(guān)系為;②樣本4,2,1,0,-2的標(biāo)準(zhǔn)差是2;③在面積為的內(nèi)任選一點(diǎn),則隨機(jī)事件“的面積小于”的概率為;④從寫有0,1,2,…,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.其中正確說(shuō)法的序號(hào)有______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營(yíng)業(yè)收入占比 | ||||
凈利潤(rùn)占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營(yíng)銷虧損
B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同
C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為的正方形中,點(diǎn),分別是邊,上的點(diǎn),且,將,沿,折起,使得,兩點(diǎn)重合于點(diǎn)上,設(shè)與交于點(diǎn),過(guò)點(diǎn)作于點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是橢圓的左、右焦點(diǎn),橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(不過(guò)坐標(biāo)原點(diǎn))與橢圓交于,兩點(diǎn),且點(diǎn)在軸上方,點(diǎn)在軸下方,若,求直線的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com