A. | (5,7) | B. | (4,6) | C. | (5,9) | D. | (4,7) |
分析 根據(jù)函數(shù)奇偶性和對稱性之間的關系求出函數(shù)的周期性以及函數(shù)在一個周期上的解析式,利用函數(shù)和方程之間的關系轉化為f(x)-2=loga(x+5),利用數(shù)形結合轉化為兩個函數(shù)有5個不同的交點,建立不等式關系進行求解即可.
解答 解:∵偶函數(shù)f(x)對任意x均滿足f(1+x)=f(1-x),
∴f(1+x)=f(1-x)=f(x-1),
即f(x+2)=f(x),
即函數(shù)f(x)的周期是2,
若0≤x≤1,則-1≤-x≤0,
則1≤2-x≤2,
則f(x)=f(-x)=f(2-x)=2-x+1=3-x,0≤x≤1,
即f(x)=$\left\{\begin{array}{l}{3-x,}&{0≤x≤1}\\{x+1,}&{1<x≤2}\end{array}\right.$,
由f(x)-loga(x+5)=2得f(x)-2=loga(x+5),
設h(x)=f(x)-2,g(x)=loga(x+5),
則函數(shù)h(x)在[0,2]上的解析式為h(x)=$\left\{\begin{array}{l}{1-x,}&{0≤x≤1}\\{x-1,}&{1<x≤2}\end{array}\right.$,
作出函數(shù)h(x)的圖象如圖:
若0<a<1,則函數(shù)g(x)=loga(x+5)與h(x)只有一個交點,不滿足條件.
若a>1,要使方程f(x)-loga(x+5)=2有5個不相等的實數(shù)根,
則等價為h(x)與g(x)有5個不同的交點,
則滿足$\left\{\begin{array}{l}{h(0)>g(0)}\\{h(2)<g(2)}\end{array}\right.$,即$\left\{\begin{array}{l}{lo{g}_{a}5<1}\\{lo{g}_{a}7>1}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>5}\\{1<a<7}\end{array}\right.$得5<a<7,
故選:A.
點評 本題考查抽象函數(shù)及其應用,著重考查函數(shù)的對稱性、周期性的確定及應用,考查轉化思想與作圖能力,利用數(shù)形結合是解決本題的關鍵.屬于難題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com