設(shè),滿足. (1) 求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)三內(nèi)角所對邊分別為且,求在 上的值域.
(1)單調(diào)增區(qū)間為; (2) .
【解析】
試題分析:(1)
的單調(diào)增區(qū)間為 6分
(2),由余弦定理可變形為,由正弦定理為
12分
考點:本題主要考查三角函數(shù)的圖象和性質(zhì),三角函數(shù)和差倍半公式,正弦定理、余弦定理的應(yīng)用。
點評:典型題,三角函數(shù)的圖象和性質(zhì)、三角函數(shù)圖象的變換是高考考查的重點,為研究三角函數(shù)的性質(zhì),往往要利用誘導(dǎo)公式、和差倍半公式進(jìn)行“化一” 。(II)首先應(yīng)用正弦定理、余弦定理確定B的范圍,進(jìn)一步研究指定角的范圍內(nèi)三角函數(shù)最大值、最小值問題。在確定角的范圍時易出錯,要特別細(xì)心。
科目:高中數(shù)學(xué) 來源: 題型:
an |
a1 |
an |
1 |
2 |
an |
an |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
(log2an)2 |
n+1 |
2n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
2n |
n |
m |
20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
b2 |
x2 |
4 |
y2 |
b2 |
kAA1+kAA2 |
kPA1+kPA2 |
x2 |
4 |
y2 |
m2 |
x2 |
4 |
y2 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com