【題目】已知函數(shù)f(x)=lnx﹣kx+k.
(Ⅰ)若f(x)≥0有唯一解,求實數(shù)k的值;
(Ⅱ)證明:當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1.
(附:ln2≈0.69,ln3≈1.10, ,e2≈7.39)

【答案】解法一:(Ⅰ)函數(shù)f(x)的定義域為(0,+∞). 要使f(x)≥0有唯一解,只需滿足f(x)max=0,且f(x)max=0的解唯一,(1分)
①當k≤0時,f'(x)≥0,f(x)在(0,+∞)上單調(diào)遞增,且f(1)=0,
所以f(x)≥0的解集為[1,+∞),不符合題意;
②當k>0時,且 時,f'(x)≥0,f(x)單調(diào)遞增;當 時,f'(x)<0,f(x)單調(diào)遞減,所以f(x)有唯一的一個最大值為 ,
,得k=1,此時f(x)有唯一的一個最大值為f(1),且f(1)=0,故f(x)≥0的解集是{1},符合題意;
綜上,可得k=1.
(Ⅱ)要證當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1,
即證當a≤1時,ex﹣ax2﹣xlnx﹣1>0,
即證ex﹣x2﹣xlnx﹣1>0.(7分)
由(Ⅰ)得,當k=1時,f(x)≤0,即lnx≤x﹣1,從而xlnx≤x(x﹣1),
故只需證ex﹣2x2+x﹣1>0,當x>0時成立;
令h(x)=ex﹣2x2+x﹣1(x≥0),則h'(x)=ex﹣4x+1,
令F(x)=h'(x),則F'(x)=ex﹣4,令F'(x)=0,得x=2ln2.
因為F'(x)單調(diào)遞增,所以當x∈(0,2ln2]時,F(xiàn)'(x)≤0,F(xiàn)(x)單調(diào)遞減,即h'(x)單調(diào)遞減,當x∈(2ln2,+∞)時,F(xiàn)'(x)>0,F(xiàn)(x)單調(diào)遞增,即h'(x)單調(diào)遞增,
所以h'(ln4)=5﹣8ln2<0,h'(0)=2>0,h'(2)=e2﹣8+1>0,
由零點存在定理,可知x1∈(0,2ln2),x2∈(2ln2,2),使得h'(x1)=h'(x2)=0,
故當0<x<x1或x>x2時,h'(x)>0,h(x)單調(diào)遞增;當x1<x<x2時,h'(x)<0,h(x)單調(diào)遞減,所以h(x)的最小值是h(0)=0或h(x2).
由h'(x2)=0,得 ,h(x2)=
因為x2∈(2ln2,2),所以h(x2)>0,
故當x>0時,h(x)>0,所以原不等式成立.
解法二:(Ⅰ)函數(shù)f(x)的定義域為(0,+∞). ,(1分)
①當k≤0時,f'(x)≥0,f(x)在(0,+∞)上單調(diào)遞增,且f(1)=0,所以f(x)≥0的解為[1,+∞),此時不符合題意;
②當k>0時, ,
所以當 時,f'(x)≥0,f(x)單調(diào)遞增;當 時,f'(x)<0,f(x)單調(diào)遞減,所以 ,
令g(k)=k﹣lnk﹣1, ,
當k∈(0,1]時,g'(k)≤0,g(k)單調(diào)遞減,當k∈(1,+∞)時,g'(k)>0,g(k)單調(diào)遞增,所以g(k)≥g(1)=0,由此可得當k>0且k≠1時, ,
且當x→0+ , x→+∞時,f(x)→﹣∞,由零點存在定理, ,
使得f(x1)=f(x2)=0,當x1≤x≤x2時,f(x)≥0,解集不唯一,不符合題意;
當k=1時,f(x)≤f(1)=0,所以f(x)≥0的解集是{1},符合題意;
綜上可得,當k=1時,f(x)≥0有唯一解;
(Ⅱ)要證明當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1,
即證當a≤1時,ex﹣ax2﹣xlnx﹣1>0,(因為ax2≤x2
即證ex﹣x2﹣xlnx﹣1>0,(7分)
令F(x)=ex﹣x2﹣xlnx﹣1(x>0),則F'(x)=ex﹣2x﹣lnx﹣1,
令G(x)=F'(x),則 在(0,+∞)上單調(diào)遞增,且G'(1)<0,G'(2)>0,
所以x0∈(1,2)使得G'(x0)=0,即
所以當x>x0時,G'(x)>0,G(x)單調(diào)遞增,即F'(x)遞增;
當0<x<x0時,G'(x)<0,G(x)單調(diào)遞減,即F'(x)遞減,
所以 , ,
當x∈(1,2)時遞減,F(xiàn)'(x0min<H(1)=0,
當x→0時,F(xiàn)'(x)→+∞, ,
由零點存在定理,可得x1∈(0,x0), ,F(xiàn)'(x1)=F'(x2)=0,
故當0<x<x1或x>x2時,F(xiàn)'(x)>0,F(xiàn)(x)單調(diào)遞增,
當x1<x<x2時,F(xiàn)'(x)<0,F(xiàn)(x)單調(diào)遞減,
當x→0+時,F(xiàn)(x)→0,由F'(x2)=0得, , ,
又F(x2)= ,
令M(x)=﹣x2+2x+lnx﹣xlnx( ),
遞減,且M'(1)=0,所以M'(x)<0,
所以M(x)在 遞減, ,
所以當 ,M(x)>0,即F(x2)>0,
所以F(x)>0,即原不等式成立.
【解析】解法一:(Ⅰ)要使f(x)≥0有唯一解,只需滿足f(x)max=0,且f(x)max=0的解唯一,分①當k≤0,②當k>0 討論求解;(Ⅱ)要證當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1,即證當a≤1時,ex﹣ax2﹣xlnx﹣1>0,即證ex﹣x2﹣xlnx﹣1>0.由(Ⅰ)得xlnx≤x(x﹣1),故只需證ex﹣2x2+x﹣1>0,當x>0時成立;解法二:(Ⅰ)分①當k≤0時,②當k>0時兩種情況求解,(Ⅱ)要證明當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1,即證當a≤1時,ex﹣ax2﹣xlnx﹣1>0,(因為ax2≤x2),即證ex﹣x2﹣xlnx﹣1>0
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】探究函數(shù),x∈(0,+∞)取最小值時x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

請觀察表中y值隨x值變化的特點,完成以下的問題:

(1)函數(shù)(x>0)在區(qū)間(02)上遞減;函數(shù)在區(qū)間________上遞增.x=_________時,_______.

(2)證明:函數(shù)(x>0)在區(qū)間(O,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角的對邊分別為,已知

(1)求;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中 .

(1)當 時,求函數(shù) 處的切線方程;

(2)若函數(shù) 在定義域上有且僅有一個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2019年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

(1)求出2019年的利潤(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

(2)2019年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為4的正方形ABCD的邊上有一點P,沿著折線BCDA由點B(起點)向點A(終點)運動.設點P運動的路程為x,APB的面積為y,yx之間的函數(shù)關系式用如圖所示的程序框圖給出.

(1)寫出程序框圖中①,,③處應填充的式子.

(2)若輸出的面積y值為6,則路程x的值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請親朋好友、同事高鄰來助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學業(yè)有成,仕途風順,添丁加口,朋友相聚,都要以酒示意,借酒表達內(nèi)心的歡喜.而凡有酒宴,一定要劃拳,劃拳是余江酒文化的特色.余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來“做關”,﹣﹣就是依次陪桌上會劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長輩一杯酒. 再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜贏叔叔,叔叔才會喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒猜到繼續(xù)喝第二杯,但第三拳不管誰贏雙方同飲自己杯中酒,假設小明每拳贏叔叔的概率為 ,問在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少(
(猜拳只是一種娛樂,喝酒千萬不要過量。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導函數(shù),則函數(shù)y=2f(x)+f′(x)的一個單調(diào)遞減區(qū)間是(
A.[ ]
B.[﹣ , ]
C.[﹣ ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間[0,2]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x3+ax﹣b在區(qū)間[﹣1,1]上有且只有一個零點的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案