【題目】已知橢圓的左、右頂點(diǎn)分別為,,上下頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線與橢圓C相交于P,Q兩點(diǎn),分別為線段,的中點(diǎn),坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且,求實(shí)數(shù)k的取值范圍.

【答案】1

2

【解析】

1)依題意可得,,再結(jié)合,即可解出,得出橢圓C的方程;

2)聯(lián)立直線和橢圓C的方程,可解得,再利用坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,得到,且為矩形,因此,即可用表示出,然后根據(jù)離心率的范圍求出的范圍,即可根據(jù)二次函數(shù)的知識(shí)求出.

1,,由,可得,化為

聯(lián)立,解得,,∴橢圓C的方程為.

2)設(shè),,聯(lián)立,可得,

.

由題意可知:,且為矩形,

,而,

,

,∴,

,∴

可得,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

)過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為8,求直線的方程;

)當(dāng)取何值時(shí),直線與圓相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),,上兩動(dòng)點(diǎn),且的長(zhǎng)為定值,則下面四個(gè)值中不是定值的是(

A.點(diǎn)到平面的距離B.直線與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量,其中,則下列判斷錯(cuò)誤的是( )

A.向量軸正方向的夾角為定值(與、之值無(wú)關(guān))

B.的最大值為

C.夾角的最大值為

D.的最大值為l

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為,,上下頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線與橢圓C相交于P,Q兩點(diǎn),分別為線段,的中點(diǎn),坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時(shí),記函數(shù),若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中,,若以,為焦點(diǎn)的雙曲線的漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案