【題目】在平面直角坐標(biāo)系中,點(diǎn)分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為,點(diǎn)在雙曲線上,不在軸上的動(dòng)點(diǎn)與動(dòng)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,且四邊形的周長(zhǎng)為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)的直線交的軌跡,兩點(diǎn),上一點(diǎn),且滿足,其中,求的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)題意列出表達(dá)式又因?yàn)辄c(diǎn)在雙曲線上,所以,聯(lián)立兩個(gè)方程可得到參數(shù)值;(2)聯(lián)立直線和橢圓得到二次方程,又因?yàn)?/span>,得代入橢圓方程得,根據(jù)弦長(zhǎng)公式得到,求表達(dá)式的范圍即可.

詳解:(1)設(shè)點(diǎn),分別為 ,由已知,所以, ,又因?yàn)辄c(diǎn)在雙曲線上,所以

,即,解得,,所以.

連接,因?yàn)?/span>,所以四邊形為平行四邊形,

因?yàn)樗倪呅?/span>的周長(zhǎng)為,所以,

所以動(dòng)點(diǎn)的軌跡是以點(diǎn)、分別為左、右焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓(除去左右頂點(diǎn)),可得動(dòng)點(diǎn)的軌跡方程為:.

(2)由題意可知該直線存在斜率,設(shè)其方程為.

,得

設(shè),,,則,

,得,

代入橢圓方程得,由,

,則,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在三棱錐ABCD中,CACBDADB.作BECD,E為垂足,作AHBEH.求證:AH⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四面體的四個(gè)頂點(diǎn)都在半徑為的球面上,是球的直徑,且則四面體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),試研究函數(shù)的極值情況;

(2)記函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,記,若在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)平面上點(diǎn)對(duì)應(yīng)的復(fù)數(shù) 為虛數(shù)單位)滿足,點(diǎn)的軌跡方程為曲線. 雙曲線:與曲線有共同焦點(diǎn),傾斜角為的直線與雙曲線的兩條漸近線的交點(diǎn)是、,為坐標(biāo)原點(diǎn).

(1)求點(diǎn)的軌跡方程

(2)求直線的方程;

(3)設(shè)PQR三個(gè)頂點(diǎn)在曲線上,求證:當(dāng)PQR重心時(shí),PQR的面積是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

(1)已知數(shù)列:,“K數(shù)列,求實(shí)數(shù)的取值范圍;

(2)設(shè)等差數(shù)列的前項(xiàng)和為,當(dāng)首項(xiàng)與公差滿足什么條件時(shí),數(shù)列“K數(shù)列”?

(3)設(shè)數(shù)列的前項(xiàng)和為,,且,. 設(shè),是否存在實(shí)數(shù),使得數(shù)列“K數(shù)列”. 若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)討論的單調(diào)性;

(2)若對(duì),不等式恒成立,求的取值范圍;

(3)已知當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,且∠DAB60°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F

(1)求證:ABEF

(2)若PAPDAD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案