【題目】已知△ABC的頂點(diǎn)B(﹣1,﹣3),邊AB上的高CE所在直線的方程為4x+3y﹣7=0,BC邊上中線AD所在的直線方程為x﹣3y﹣3=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AB的方程.
【答案】
(1)解:設(shè)D(a,b),則C(2a+1,2b+3),
∴ ,
解得 ,
∴D(0,﹣1),C(1,1);
(2)解:∵CE⊥AB,且直線CE的斜率為 ,
∴直線AB的斜率為 ,
∴直線AB的方程為 ,即3x﹣4y﹣9=0.
由 ,解得 ,
∴A(3,0),
∴直線AB方程為: ,
化簡(jiǎn)整理得,3x﹣4y﹣9=0.
【解析】(1)設(shè)D(a,b),則C(2a+1,2b+3),聯(lián)立CE與AD的方程解方程組可得點(diǎn)C的坐標(biāo).(2)由題意可垂直關(guān)系可得BC的斜率為﹣2,可得AB的方程為3x﹣4y﹣9=0,聯(lián)立AB與AD的方程解方程組可得點(diǎn)A的坐標(biāo);結(jié)合A、B的坐標(biāo)來(lái)求直線AB的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= + 的定義域是A,集合B={x|m≤x≤m+2}.
(1)求定義域A;
(2)若A∪B=A,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)摩天輪的半徑為8m,每12min旋轉(zhuǎn)一周,最低點(diǎn)離地面為2m,若摩天輪邊緣某點(diǎn)P從最低點(diǎn)按逆時(shí)針?lè)较蜷_(kāi)始旋轉(zhuǎn),則點(diǎn)P離地面的距離h(m)與時(shí)間t(min)之間的函數(shù)關(guān)系是( )
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),如果存在非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[﹣1,1]時(shí),f(x)=x2 , 則y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,則∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=
④若a>0,b>0,a+b=2,則a2+b2≥2;
正確的序號(hào)有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點(diǎn).
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義函數(shù)序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),則函數(shù)y=f2017(x)的圖象與曲線 的交點(diǎn)坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com