【題目】已知函數(shù) ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

【答案】( ,+∞)∪(﹣∞,0]
【解析】解:依題意,在定義域內(nèi),函數(shù)f(x)不是單調(diào)函數(shù),分情況討論:

①當(dāng)x≥1時(shí),若f(x)=x2 ﹣3ax 不是單調(diào)的,它的對稱軸為x= a,則有 a>1,

解得a> ;

②當(dāng)x≥1時(shí),若f(x)=x2 ﹣3ax 是單調(diào)的,則f(x)單調(diào)遞增,此時(shí) a≤1,即a≤

當(dāng)x<1時(shí),由題意可得f(x)=ax+1﹣4a應(yīng)該不單調(diào)遞增,故有a≤0.

綜合得:a的取值范圍是( ,+∞)∪(﹣∞,0].

故答案為:( ,+∞)∪(﹣∞,0].

由題意可得,在定義域內(nèi),函數(shù)f(x)不是單調(diào)的,考慮x≥1時(shí),討論函數(shù)的單調(diào)性,即可求得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣1+lnx,若存在x0>0,使得f(x0)≤0有解,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時(shí),函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個(gè)單調(diào)減區(qū)間內(nèi)有一個(gè)零點(diǎn)﹣ ,且其圖象過點(diǎn)A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時(shí)函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為 ,二等品率為 ;B型產(chǎn)品的一等品率為 ,二等品率為 .生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元.設(shè)生產(chǎn)各件產(chǎn)品相互獨(dú)立.
(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;
(2)記X(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求X的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 點(diǎn)M(0,2)關(guān)于直線y=﹣x的對稱點(diǎn)在橢圓C上,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A,B兩點(diǎn),過點(diǎn)P(4,0)的直線PB交橢圓C于另一點(diǎn)E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2x,g(x)=x2+2x,數(shù)列{an}的前n項(xiàng)和記為Sn , bn為數(shù)列{bn}的通項(xiàng),n∈N* . 點(diǎn)(bn , n)和(n,Sn)分別在函數(shù)f(x)和g(x)的圖象上.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令Cn= ,求數(shù)列{Cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖示,A,B分別是橢圓C: (a>b>0)的左右頂點(diǎn),F(xiàn)為其右焦點(diǎn),2是|AF與|FB|的等差中項(xiàng), 是|AF|與|FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A、B的任一動點(diǎn),過點(diǎn)A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.

(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過該定點(diǎn)N?若存在,求出N點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點(diǎn)B(﹣1,﹣3),邊AB上的高CE所在直線的方程為4x+3y﹣7=0,BC邊上中線AD所在的直線方程為x﹣3y﹣3=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和雙曲線焦點(diǎn)F1 , F2相同,且離心率互為倒數(shù),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案