19.設(shè)函數(shù)f(x)=lg(1-|x|)+$\frac{1}{{x}^{2}+1}$,則使得f(2x+1)≥f(x)成立的x的取值范圍是(-1,-$\frac{1}{3}$].

分析 由題知此函數(shù)為偶函數(shù),通過(0,+∞)的單調(diào)性將不等式問題轉(zhuǎn)化為距離問題,直接解不等式,注意函數(shù)定義域.

解答 解:由題知f(x)為偶函數(shù),f(|2x+1|)≥f(|x|),
又因?yàn)閒(x)在(0,+∞)為單調(diào)遞減的,所以|2x+1|≤|x|,解得$-1≤x≤-\frac{1}{3}$
又因?yàn)閒(x)的定義域?yàn)?-|x|>0,即(-1,1),
所以x的取值范圍是$(-1,-\frac{1}{3}]$,
故答案為:$(-1,-\frac{1}{3}]$.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)$\frac{2-ai}{1+i}$(a∈R)是純虛數(shù),i是虛數(shù)單位,則a的值是( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若關(guān)于x的不等式|x+3|+|x-1|>a恒成立,則a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知2cos(B-C)=1+4sinBsinC.
(1)求角A的大小;
(2)若a=2$\sqrt{7}$,△ABC的面積2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍是[1,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}$滿足條件:對(duì)于[0,3],?唯一的x2∈R,使得f(x1)=f(x2).當(dāng)f(2a)=f(3b)成立時(shí),則實(shí)數(shù)a+b=( 。
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合M={x|-4≤x<2},集合N={x|2x<$\frac{1}{4}$},則M∩N中所含整數(shù)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某培訓(xùn)機(jī)構(gòu)對(duì)沈陽(yáng)市兩所高中的學(xué)生是否愿意參加自主招生培訓(xùn)的情況進(jìn)行問卷調(diào)查和考試測(cè)驗(yàn),從兩所學(xué)校共隨機(jī)抽取100位同學(xué)進(jìn)行調(diào)查,統(tǒng)計(jì)結(jié)果如表:
自招
學(xué)校
愿意不愿意
A學(xué)校4610
B學(xué)校2420
(1)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為是否愿意參加自主招生培訓(xùn)與學(xué)校有關(guān)?
(2)考試測(cè)驗(yàn)中分客觀題和主觀題,客觀題共有8道,每道分值5分,學(xué)生李華答對(duì)每道客觀題的概率均為0.8.主觀題共有8道,每道分值12分,須隨機(jī)抽取5道主觀題作答,其中李華完全會(huì)答的有4道,不完全會(huì)的有4道,不完全會(huì)的每道主觀題得分S的概率滿足:P(S=3k)=$\frac{k}{6}$,k=1,2,3,假設(shè)解答各題之間沒有影響.
①對(duì)于一道不完全會(huì)的主觀題,李華得分的數(shù)學(xué)期望是多少?
②求李華在本次測(cè)驗(yàn)中得分ξ的數(shù)學(xué)期望.
臨界值參考表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參考公式:k=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且f(-1)=2,則f(2017)的值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案