已知橢圓的焦距為4,且過(guò)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為。取點(diǎn),連接,過(guò)點(diǎn)作的垂線交軸于點(diǎn)。點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),作直線,問(wèn)這樣作出的直線是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.
(Ⅰ)(Ⅱ)直線與橢圓只有一個(gè)公共點(diǎn)
【解析】(1)因?yàn)闄E圓過(guò)點(diǎn)
且
橢圓C的方程是
(2)
由題意,各點(diǎn)的坐標(biāo)如上圖所示,
則的直線方程:
化簡(jiǎn)得
又,
所以帶入
求得最后
所以直線與橢圓只有一個(gè)公共點(diǎn).
第(1)題根據(jù)題意確定的大小,再將帶入方程,確定橢圓的方程;第(2)題是存在性問(wèn)題,根據(jù)題意,設(shè)出,根據(jù)條件寫(xiě)出的直線方程,并進(jìn)行化簡(jiǎn),然而點(diǎn)坐標(biāo)又在橢圓上,帶入方程,求出,即可判斷直線是否與橢圓C一定有唯一的公共點(diǎn).
【考點(diǎn)定位】考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),直線和橢圓的位置關(guān)系,并考查數(shù)形結(jié)合思想,邏輯推理能力及運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的焦距為4,且過(guò)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為。取點(diǎn),連接,過(guò)點(diǎn)作的垂線交軸于點(diǎn)。點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),作直線,問(wèn)這樣作出的直線是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年河北省高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的焦距為4,且與橢圓有相同的離心率,斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于不同兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)橢圓的右焦點(diǎn)在以為直徑的圓內(nèi)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知橢圓的焦距為4,且與橢圓有相同的離心率,斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于不同兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)橢圓的右焦點(diǎn)在以為直徑的圓內(nèi)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷4(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com