精英家教網 > 高中數學 > 題目詳情

【題目】每年9月第三個公休日是全國科普日.某校為迎接2019年全國科普日,組織了科普知識競答活動,要求每位參賽選手從4生態(tài)環(huán)保題2智慧生活題中任選3道作答(每道題被選中的概率相等),設隨機變量ξ表示某選手所選3道題中“智慧生活題”的個數.

(Ⅰ)求該選手恰好選中一道智慧生活題的概率;

(Ⅱ)求隨機變量ξ的分布列及數學期望.

【答案】(Ⅰ)(Ⅱ)分布列見解析,1.

【解析】

(Ⅰ)設該選手恰好選中一道“智慧生活題”為事件,利用古典概型求解即可.

(Ⅱ)由題意可知;求出概率可得到的分布列,再由期望公式即可求得期望.

(Ⅰ)根據古典概型概率求法,可設該選手恰好選中一道智慧生活題為事件,則選中2生態(tài)環(huán)保題

,

(Ⅱ)由題意可知;

,

所以的分布列為:

0

1

2

的期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。

(Ⅰ)求的極坐標方程;

(Ⅱ)設點的極坐標為,求面積的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了確定下一年度投入某種產品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量(單位:噸)和年利潤(單位:萬元)的影響對近6年宣傳費和年銷量的數據做了初步統(tǒng)計,得到如下數據:

年份

2013

2014

2015

2016

2017

2018

年宣傳費(萬元)

38

48

58

68

78

88

年銷售量(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式,兩邊取對數,即,令,即對上述數據作了初步處理,得到相關的值如下表:

75.3

24.6

18.3

101.4

1)從表中所給出的6年年銷售量數據中任選2年做年銷售量的調研,求所選數據中至多有一年年銷售量低于21噸的概率.

2)根據所給數據,求關于的回歸方程;

3)若生產該產品的固定成本為200(萬元),且每生產1(噸)產品的生產成本為20(萬元)(總成本=固定成本+生產成本+年宣傳費),銷售收入為(萬元),假定該產品產銷平衡(即生產的產品都能賣掉),2019年該公司計劃投入108萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中為自然對數的底數,

附:對于一組數據,其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小明口袋中有3張10元,3張20元(因紙幣有編號認定每張紙幣不同),現(xiàn)從中掏出紙幣超過45元的方法有_______種;若小明每次掏出紙幣的概率是等可能的,不放回地掏出4張,剛好是50元的概率為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓離心率為,點與橢圓的左、右頂點可以構成等腰直角三角形.點C是橢圓的下頂點,經過橢圓中心O的一條直線與橢圓交于AB兩個點(不與點C重合),直線CA,CB分別與x軸交于點DE

1)求橢圓的標準方程.

2)判斷的大小是否為定值,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲,乙兩人進行定點投籃活動,已知他們每投籃一次投中的概率分別是,每次投籃相互獨立互不影響.

(Ⅰ)甲乙各投籃一次,記至少有一人投中為事件A,求事件A發(fā)生的概率;

(Ⅱ)甲乙各投籃一次,記兩人投中次數的和為X,求隨機變量X的分布列及數學期望;

(Ⅲ)甲投籃5次,投中次數為ξ,求ξ2的概率和隨機變量ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,E,M,N分別是,,的中點.

1)證明:平面

2)求點C到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】市某機構為了調查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調查,調查結果統(tǒng)計如下:

支持

不支持

合計

男性市民

女性市民

合計

(1)根據已知數據,把表格數據填寫完整;

(2)利用(1)完成的表格數據回答下列問題:

(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關;

(ii)已知在被調查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解中學生對交通安全知識的掌握情況,從農村中學和城鎮(zhèn)中學各選取100名同學進行交通安全知識競賽.下圖1和圖2分別是對農村中學和城鎮(zhèn)中學參加競賽的學生成績按,,,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識競賽的農村中學和城鎮(zhèn)中學的平均成績;

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認為“農村中學和城鎮(zhèn)中學的學生對交通安全知識的掌握情況有顯著差異”?

成績小于60分人數

成績不小于60分人數

合計

農村中學

城鎮(zhèn)中學

合計

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

同步練習冊答案