【題目】為了解中學生對交通安全知識的掌握情況,從農(nóng)村中學和城鎮(zhèn)中學各選取100名同學進行交通安全知識競賽.下圖1和圖2分別是對農(nóng)村中學和城鎮(zhèn)中學參加競賽的學生成績按,,,分組,得到的頻率分布直方圖.
(Ⅰ)分別估算參加這次知識競賽的農(nóng)村中學和城鎮(zhèn)中學的平均成績;
(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認為“農(nóng)村中學和城鎮(zhèn)中學的學生對交通安全知識的掌握情況有顯著差異”?
成績小于60分人數(shù) | 成績不小于60分人數(shù) | 合計 | |
農(nóng)村中學 | |||
城鎮(zhèn)中學 | |||
合計 |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
【答案】(Ⅰ)農(nóng)村中學的競賽平均成績56,城鎮(zhèn)中學的競賽平均成績60;(Ⅱ)見解析.
【解析】
(Ⅰ)由頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和即可得平均值;
(Ⅱ)根據(jù)已知數(shù)據(jù)完成列聯(lián)表,再利用公式計算出觀測值,再查表下結論即可.
(Ⅰ)農(nóng)村中學的競賽平均成績,
城鎮(zhèn)中學的競賽平均成績.
(Ⅱ)
成績小于60分人數(shù) | 成績不小于60分人數(shù) | 合計 | |
農(nóng)村中學 | 70 | 30 | 100 |
城鎮(zhèn)中學 | 50 | 50 | 100 |
合計 | 120 | 80 | 200 |
,
有的把握認為“農(nóng)村中學和城鎮(zhèn)中學的學生對交通安全知識的掌握情況有顯著差異”
科目:高中數(shù)學 來源: 題型:
【題目】每年9月第三個公休日是全國科普日.某校為迎接2019年全國科普日,組織了科普知識競答活動,要求每位參賽選手從4道“生態(tài)環(huán)保題”和2道“智慧生活題”中任選3道作答(每道題被選中的概率相等),設隨機變量ξ表示某選手所選3道題中“智慧生活題”的個數(shù).
(Ⅰ)求該選手恰好選中一道“智慧生活題”的概率;
(Ⅱ)求隨機變量ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)當時,證明: (其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ如果曲線與x軸相切,求a的值;
Ⅱ若,證明:;
Ⅲ如果函數(shù)在區(qū)間上不是單調函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市圖書館準備進一定量的書籍,由于不同年齡段對圖書的種類需求不同,為了合理配備資源,現(xiàn)對該市看書人員隨機抽取了一天60名讀書者進行調查.將他們的年齡分成6段:,后得到如圖所示的頻率分布直方圖,問:
(1)在60名讀書者中年齡分布在的人數(shù);
(2)估計60名讀書者年齡的平均數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是__________(填序號)
(1)已知相關變量滿足回歸方程,若變量增加一個單位,則平均增加個單位
(2)若為兩個命題,則“”為假命題是“”為假命題的充分不必要條件
(3)若命題,,則,
(4)已知隨機變量,若,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進行美麗鄉(xiāng)村建設,規(guī)劃在長為10千米的河流OC的一側建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點為;觀光帶的后一部分為線段BC,如圖所示.
(1)求曲線段OABC對應的函數(shù)的解析式;
(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,左焦點為.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點,線段的中點為,點在橢圓上,滿足(為坐標原點).判斷的面積是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com