【題目】如圖,在棱長為2的正方體中,點(diǎn)P在正方體的對角線AB上,點(diǎn)Q在正方體的棱CD上,若P為動(dòng)點(diǎn),Q為動(dòng)點(diǎn),則PQ的最小值為_____.

【答案】

【解析】

建立空間直角坐標(biāo)系,利用三點(diǎn)共線設(shè)出點(diǎn)P(λ,λ,2λ)0λ2,以及Q(02,μ),0μ2,根據(jù)兩點(diǎn)間的距離公式,以及配方法,即可求解.

建立如圖所示空間直角坐標(biāo)系,設(shè)P(λ,λ,2λ),

Q(02,μ)(0λ20μ2),

可得PQ=

2(λ1)20,(2λμ)20,∴2(λ1)2+(2λμ)2+22

當(dāng)且僅當(dāng)λ1=2λμ=0時(shí),等號(hào)成立,此時(shí)λ=μ=1,

∴當(dāng)且僅當(dāng)PQ分別為ABCD的中點(diǎn)時(shí),

PQ的最小值為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(1)班全體女生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

1)求高二(1)班全體女生的人數(shù);

2)由頻率分布直方圖估計(jì)該班女生此次數(shù)學(xué)測試成績的眾數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面,,,,且點(diǎn)分別為的中點(diǎn)

I)求證:平面

II)求二面角的正弦值;

III)設(shè)為棱上的點(diǎn),若直線和平面所成角的正弦值為,求的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn)P,過它的左、右焦點(diǎn)分別作直線l112.l1交橢圓于A.兩點(diǎn),l2交橢圓于C,D兩點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程.

(2)求四邊形ACBD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),為橢圓上的點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)都在橢圓上,且中點(diǎn)在線段(不包括端點(diǎn))上,求面積的最大值,及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在曲線x2+y2=1上運(yùn)動(dòng),過點(diǎn)Px軸的垂線,垂足為Q,動(dòng)點(diǎn)M滿足.

1)求動(dòng)點(diǎn)M的軌跡方程;

2)點(diǎn)AB在直線xy4=0上,且AB=4,求△MAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,,,,的中點(diǎn).

(Ⅰ)證明:平面平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知互不重合的直線,,互不重合的平面,,給出下列四個(gè)命題,錯(cuò)誤的命題是(

A.,,,則

B.,,則

C.,,則

D.,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面BPC⊥平面DPC,,E,F(xiàn)分別是PC,AD的中點(diǎn)

求證:(1)BE⊥CD;

2)EF∥平面PAB

查看答案和解析>>

同步練習(xí)冊答案