【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面BPC⊥平面DPC,,E,F(xiàn)分別是PC,AD的中點(diǎn).
求證:(1)BE⊥CD;
(2)EF∥平面PAB.
【答案】(1)見解析;(2)見解析
【解析】
(1)證明BE⊥PC,即可證得BE⊥平面PCD,問題得證。
(2)取PB的中點(diǎn)H,連結(jié)EH,AH,證明四邊形AFEH是平行四邊形,問題得證。
(1)在△PBC中,因?yàn)?/span>,E是PC的中點(diǎn),所以BE⊥PC.
又因?yàn)槠矫?/span>BPC⊥平面DPC,平面BPC平面DPC,平面BPC,
所以BE⊥平面PCD.又因?yàn)?/span>平面DPC, 所以BE⊥CD.
(2)取PB的中點(diǎn)H,連結(jié)EH,AH.在△PBC中,又因?yàn)?/span>E是PC的中點(diǎn),
所以HE∥BC,.又底面ABCD是平行四邊形,F是AD的中點(diǎn),
所以AF∥BC,. 所以HE∥AF且,
所以四邊形AFEH是平行四邊形,所以EF∥HA.
又因?yàn)?/span>平面PAB,平面PAB, 所以EF∥平面PAB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,點(diǎn)P在正方體的對角線AB上,點(diǎn)Q在正方體的棱CD上,若P為動點(diǎn),Q為動點(diǎn),則PQ的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①在圓柱的上、下底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓柱的母線;②存在每個(gè)面都是直角三角形的四面體;③若三棱錐的三條側(cè)棱兩兩垂直,則其三個(gè)側(cè)面也兩兩垂直;④棱臺的上、下底面可以不相似,但側(cè)棱長一定相等.其中正確命題的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為參數(shù),且.
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值;
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意函數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價(jià)為5元/件,銷售時(shí)還需交納品牌使用費(fèi)3元/件,售價(jià)為元/件,其中,且.根據(jù)市場調(diào)查,當(dāng),且時(shí),每月的銷售量(萬件)與成正比;當(dāng),且時(shí),每月的銷售量(萬件)與成反比.已知售價(jià)為15元/件時(shí),月銷售量為9萬件.
(1)求該公司的月利潤(萬件)與每件產(chǎn)品的售價(jià)(元)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該公司的月利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),是自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)若對任意的,(),求的最大值;
(3)若的極大值為,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測量其直徑后,整理得到下表:
直徑/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | |
直徑/mm | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(I)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):①;②;③.判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級為甲;若僅滿足其中兩個(gè),則等級為乙;若僅滿足其中一個(gè),則等級為丙;若全部都不滿足,則等級為丁.試判斷設(shè)備的性能等級.
(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”,將直徑尺寸在之外的零件認(rèn)定為“突變品”.從樣本的“次品”中隨意抽取兩件,求至少有一件“突變品”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com