已知雙曲線的左、右焦點分別為F1、F2,點P在雙曲線上,且PF2⊥x軸,則F2到直線PF1的距離為   
【答案】分析:依題意,可求得點P的坐標,繼而可求得直線PF1的方程,利用點到直線間的距離公式即可求得答案.
解答:解:∵F1、F2分別為雙曲線-y2=1的左、右焦點,
∴F1(-2,0),F(xiàn)2(2,0);
又點P在雙曲線上,且PF2⊥x軸,
∴點P的橫坐標為2,縱坐標y
∴P(2,±).
∴直線PF1的方程為:x±12y+2=0.
∴F2到直線PF1的距離d==
故答案為:
點評:本題考查雙曲線的簡單性質(zhì),考查直線的方程的確定與點到直線間的距離,求得直線PF1的方程是關(guān)鍵,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點分別為F1、F2,P為C的右支上一點,且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省高三第一次月考文科數(shù)學 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣西桂林市高三第一次聯(lián)合調(diào)研數(shù)學試卷(文科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點分別為F1、F2,P為C的右支上一點,且的面積等于   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣西桂林市高三第一次調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點分別為F1、F2,P為C的右支上一點,且的面積等于   

查看答案和解析>>

同步練習冊答案