關(guān)于的函數(shù),有下列結(jié)論:

①該函數(shù)的定義域是;②該函數(shù)是奇函數(shù);

③該函數(shù)的最小值為; ④當(dāng) 時(shí)為增函數(shù),當(dāng)時(shí)為減函數(shù);

其中,所有正確結(jié)論的序號(hào)是       

 

【答案】

①④

【解析】

試題分析::①函數(shù)f(x)的定義域是(0,+∞),令>0,解得x>0,故定義域是(0,+∞),命題正確;

②函數(shù)f(x)是奇函數(shù),由①知,定義域不關(guān)于原點(diǎn)對(duì)稱,故不是奇函數(shù),命題不正確;

③函數(shù)f(x)的最小值為-lg2,因?yàn)閒(x)=lg=lg≤lg=-lg2,最大值是-lg2,故命題不正確;

④當(dāng)0<x<1時(shí),函數(shù)f(x)是增函數(shù);當(dāng)x>1時(shí),函數(shù)f(x)是減函數(shù),命題正確,因?yàn)閒′(x)=lg,令導(dǎo)數(shù)大于0,可解得0<x<1,令導(dǎo)數(shù)大于0,得x>1,故命題正確.綜上,①④正確

考點(diǎn):本試題主要考查了函數(shù)定義域、最值、單調(diào)性和奇偶性,同時(shí)考查了推理論證的能力以及計(jì)算論證的能力,屬于中檔題.

點(diǎn)評(píng):解決該試題的關(guān)鍵是①根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于0,建立關(guān)系式解之驗(yàn)證定義域即可;②函數(shù)f(x)是奇函數(shù),利用奇函數(shù)的定義進(jìn)行判斷;③函數(shù)f(x)的最小值為-lg2,利用基本不等式與對(duì)數(shù)的運(yùn)算性質(zhì)求出最值;④求出導(dǎo)數(shù),解出單調(diào)區(qū)間,驗(yàn)證即可.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第二次(3月)周測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于函數(shù),有下列結(jié)論:①函數(shù)的定義域是(0,+∞);②函數(shù)是奇函數(shù);③函數(shù)的最小值為-;④當(dāng)時(shí),函數(shù)是增函數(shù);當(dāng)時(shí),函數(shù)是減函數(shù).

其中正確結(jié)論的序號(hào)是         .(寫出所有你認(rèn)為正確的結(jié)論的序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省偃師市高一第三次月考數(shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于的函數(shù),有下列結(jié)論:

①、該函數(shù)的定義域是;

②、該函數(shù)是奇函數(shù);

③、該函數(shù)的最小值為;

④、當(dāng) 時(shí)為增函數(shù),當(dāng)時(shí)為減函數(shù);

其中,所有正確結(jié)論的序號(hào)是             。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北武漢部分重點(diǎn)中學(xué)高一上期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于的函數(shù),有下列結(jié)論:

①、該函數(shù)的定義域是;            ②、該函數(shù)是奇函數(shù);

③、該函數(shù)的最小值為;

④、當(dāng) 時(shí)為增函數(shù),當(dāng)時(shí)為減函數(shù);

其中,所有正確結(jié)論的序號(hào)是             。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第一學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

對(duì)于給定的函數(shù),有下列四個(gè)結(jié)論:

的圖象關(guān)于原點(diǎn)對(duì)稱;    ②在R上是增函數(shù);

的圖象關(guān)于軸對(duì)稱;  ④的最小值為0;

其中正確的是     ★    (填寫正確的序號(hào))

 

查看答案和解析>>

同步練習(xí)冊(cè)答案