20.函數(shù)y=1g[2sin(2x+$\frac{π}{3}$)-1]的定義域是( 。
A.{x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z}B.{x|kπ+$\frac{π}{4}$<x<kπ+$\frac{11π}{12}$,k∈Z}
C.{x|kπ-$\frac{π}{6}$<x<kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x<kπ+$\frac{π}{3}$,k∈Z}

分析 根據(jù)函數(shù)成立的條件進行求解即可.

解答 解:要使函數(shù)有意義,則2sin(2x+$\frac{π}{3}$)-1>0,
則sin(2x+$\frac{π}{3}$)>$\frac{1}{2}$,
即2kπ+$\frac{π}{6}$<2x+$\frac{π}{3}$<2kπ+$\frac{5π}{6}$,
解得kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z,
即函數(shù)的定義域為{x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z},
故選:A.

點評 本題主要考查函數(shù)的定義域的求解,根據(jù)對數(shù)函數(shù)的性質(zhì)以及三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(sinβ,cosβ),α∈(0,π),β(0,2π),tan$\frac{β}{2}$=$\frac{1}{2}$,$\overrightarrow{a}•\overrightarrow=\frac{5}{13}$,
求(1)sinβ,cosβ(2)sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)a、b∈R,方程x2+ax+b=0的兩個復(fù)根與原點構(gòu)成正三角形,求實數(shù)a、b之間的關(guān)系及b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=7-8cosx-2sin2x的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.正方體ABCD-A1B1C1D1的棱長為a,M、N、P、Q分別在棱A1D1、A1B1、B1C1、BC上移動,則四面體MNPQ的最大體積是$\frac{1}{6}$a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正項數(shù)列{an}的前n項和為Sn,若4Sn2-2=an2+$\frac{1}{{a}_{n}^{2}}$(n∈N*),則S2015=( 。
A.2015+$\frac{\sqrt{2015}}{2015}$B.2015-$\frac{\sqrt{2015}}{2015}$C.2015D.$\sqrt{2015}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.兩平行直線l1,l2分別過A(1,0),B(0,5).若l1與l2的距離為5,則l1與l2的方程分別為l1:y=0,l2:y=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則,求下列函數(shù)的導(dǎo)數(shù):
(1)y=x+x2
(2)y=x3-2x
(3)y=$\sqrt{x}$+lnx
(4)y=sinx-x2
(5)f(x)=x5+x4+x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.6名男生和4名女生排成前后兩排,其中選擇2個男生2個女生站前排,其余的6人都站后排,求排法種數(shù).

查看答案和解析>>

同步練習冊答案