14.已知點(diǎn)A(2,1)為橢圓G:x2+2y2=m上的一點(diǎn).
(Ⅰ)求橢圓G的焦點(diǎn)坐標(biāo);
(Ⅱ)若橢圓G上的B,C兩點(diǎn)滿足2k1k2=-1(其中k1,k2分別為直線AB,AC的斜率).證明:B,C,O三點(diǎn)共線.

分析 (Ⅰ)由點(diǎn)A(2,1)為橢圓G:x2+2y2=m上的一點(diǎn),求出m,由此能求出橢圓G的焦點(diǎn)坐標(biāo).
(Ⅱ)由$\left\{\begin{array}{l}{y={k}_{1}(x-2)+1}\\{{x}^{2}+{2y}^{2}=6}\end{array}\right.$,得$(2{{k}_{1}}^{2}+1){x}^{2}-4{k}_{1}(2{k}_{1}-1)x+2(2{k}_{1}-1)$2-6=0,由此利用韋達(dá)定理能推導(dǎo)出y1=-y2,從而能證明B、C、O三點(diǎn)共線.

解答 解:(Ⅰ)∵點(diǎn)A(2,1)為橢圓G:x2+2y2=m上的一點(diǎn),
∴m=4+2=6,
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1$,
∴c=$\sqrt{6-3}=\sqrt{3}$,
∴橢圓G的焦點(diǎn)坐標(biāo)為(-$\sqrt{3}$,0)和($\sqrt{3}$,0).
(Ⅱ)設(shè)B(x1,y1),C(x2,y2),
由$\left\{\begin{array}{l}{y={k}_{1}(x-2)+1}\\{{x}^{2}+{2y}^{2}=6}\end{array}\right.$,消去y,化簡,得:
$(2{{k}_{1}}^{2}+1){x}^{2}-4{k}_{1}(2{k}_{1}-1)x+2(2{k}_{1}-1)$2-6=0,
∴${x}_{1}=\frac{(2{k}_{1}-1)^{2}-3}{2{{k}_{2}}^{2}+1}$,同理得${x}_{2}=\frac{(2{k}_{2}-1)^{2}-3}{2{{k}_{2}}^{2}+1}$,
∵2k1k2=-1,
∴${x}_{2}=\frac{2{{k}_{1}}^{2}(2{k}_{2}-1)^{2}-6{{k}_{1}}^{2}}{4{{k}_{1}}^{2}{{k}_{2}}^{2}+2{{k}_{1}}^{2}}$=$\frac{2(-1-{k}_{1})^{2}-6{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$=$\frac{2+4{k}_{1}-4{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$=$\frac{3-(2{k}_{1}-1)^{2}}{1+2{{k}_{1}}^{2}}$=-x1
∴2k1k2=$2×\frac{{y}_{1}-1}{{x}_{1}-2}×\frac{{y}_{2}-1}{{x}_{2}-2}$=2×$\frac{({y}_{1}-1)({y}_{2}-1)}{4-{{x}_{1}}^{2}}$=$\frac{({y}_{1}-1)({y}_{2}-1)}{{{y}_{1}}^{2}-1}$=$\frac{{y}_{2}-1}{{y}_{1}+1}$=-1,
∴y1=-y2,
∴B、C、O三點(diǎn)共線.

點(diǎn)評 本題考查橢圓的焦點(diǎn)坐標(biāo)的求法,考查三點(diǎn)共線的證明,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=2+acosx的最大值為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=-1(a>0,b>0)的離心率分別為e1,e2,且連接兩條雙曲線頂點(diǎn)所得四邊形的面積為S1,連接兩條雙曲線的焦點(diǎn)所得四邊形的面積為S2,試探究:
(1)e1與e2之間的關(guān)系式;
(2)$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知⊙C1:(x+$\sqrt{6}$)2+y2=32及點(diǎn)C2($\sqrt{6}$,0),在⊙C1上任取一點(diǎn)P,連結(jié)C2P,作線段C2P的中垂線交直線C1P于點(diǎn)M.
(1)當(dāng)P在⊙C1上運(yùn)動時,求點(diǎn)M的軌跡方程;
(2)設(shè)N為直線l:x=4上一點(diǎn),O為坐標(biāo)原點(diǎn),且OM⊥ON,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的長軸長等于圓C2:x2+y2=4的直徑,且C1的離心率等于$\frac{1}{2}$.直線l1和l2是過點(diǎn)M(1,0)互相垂直的兩條直線,l1交C1于A,B兩點(diǎn),l2交C2于C,D兩點(diǎn).
(I)求C1的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)四邊形ABCD的面積為$\frac{12}{7}\sqrt{14}$時,求直線l1的斜率k(k>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)已知點(diǎn)A(a,0),B(0,b),直線l交橢圓C于P,Q兩點(diǎn)(點(diǎn)A,B位于直線l的兩側(cè))
(i)若直線l過坐標(biāo)原點(diǎn)O,設(shè)直線AP,AQ,BP,BQ的斜率分別為k1,k2,k3,k4,求證:k1k2+k3k4為定值;
(ii)若直線l的斜率為$\frac{{\sqrt{3}}}{2}$,求四邊形APBQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在區(qū)間(0,+∞)上的函數(shù)f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)為f(x)的導(dǎo)數(shù),則( 。
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,y≤0)的離心率e=$\frac{\sqrt{6}}{3}$,且經(jīng)過點(diǎn)G(1,-$\frac{\sqrt{6}}{3}$),曲線C2:x2=2y,過曲線C1上一點(diǎn)P作C2的兩條切線,切點(diǎn)分別為A,B.
(Ⅰ)求曲線C1的方程;
(Ⅱ)求△PAB面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(2x+φ)在x=$\frac{π}{6}$處取得極大值,則函數(shù)y=f($\frac{π}{4}$+x)的圖象( 。
A.關(guān)于點(diǎn)($\frac{π}{6}$,0)對稱B.關(guān)于點(diǎn)($\frac{π}{3}$,0)對稱
C.關(guān)于直線x=$\frac{π}{6}$對稱D.關(guān)于直線x=$\frac{π}{3}$對稱

查看答案和解析>>

同步練習(xí)冊答案