已知向量m=(2sinx,cosx),n=(cosx,2cosx),定義函數(shù)f(x)=m·n-1.

(1)求函數(shù)f(x)的最小正周期;

(2)確定函數(shù)f(x)的單調(diào)區(qū)間、對稱軸與對稱中心.

解 (1)因?yàn)?i>m·n=2sinxcosx+2cos2x          …………… 2分

sin2x+cos2x+1,                        ……………4分

所以f(x)=2sin(2x),

Tπ.                                …………… 6分

(2)f(x)的單調(diào)遞增區(qū)間是(,),k∈Z,…………… 8分

f(x)的單調(diào)遞減區(qū)間是(,),k∈Z.  …………… 10分

函數(shù)f(x)的對稱軸為k∈Z,    …………… 12分

函數(shù)f(x)的對稱中心為 ,k∈Z 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2sinx,0),
n
=(sinx+cosx,sinx-cosx),且f(x)=
m
n

(1)求f(x)的最小正周期和最小值;
(2)若f(α)=1,sinβ=
1
3
,0<α<
π
2
<β<π,求cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省萊州一中2012屆高三上學(xué)期模塊檢測數(shù)學(xué)理科試題 題型:044

已知向量m=(2sinx,2cosx),n=(cosx,cosx),f(x)=m·n-1

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向左平移單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省大連市、沈陽市2012屆高三第二次聯(lián)合考試數(shù)學(xué)文科試題 題型:044

已知向量m=(sin2+,sinx),n=(cos2x-sin2x,2sinx),函數(shù)f(x)=m·n

(Ⅰ)求函數(shù)f(x)的最小正周期;

(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三10月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量m=(2sinx,cosx),n=(cosx,2cosx),定義函數(shù)f(x)=m·n-1.

(1)求函數(shù)f(x)的最小正周期;

(2)確定函數(shù)f(x)的單調(diào)區(qū)間、對稱軸與對稱中心.

 

查看答案和解析>>

同步練習(xí)冊答案