【題目】如圖所示七面體中,,平面,平面平面,四邊形是邊長為2的菱形,,,M,N分別為,的中點.
(1)求證:平面;
(2)求三棱錐的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)先利用平面與平面平行的性質(zhì)得出直線與直線平行,結(jié)合平行四邊形及平行的傳遞性可得,進而可證平面;
(2)利用線面平行把三棱錐的體積轉(zhuǎn)化為三棱錐的體積,結(jié)合三棱錐的體積公式可求結(jié)果.
(1)取的中點F,連接,.
因為平面平面,
平面平面,
平面平面,
所以,同理可得,,
,而,
所以四邊形和為平行四邊形.
又四邊形是菱形,,
所以,而點F為的中點,
所以,
又,所以四邊形為平行四邊形,從而.
點M,N分別為,的中點,所,
,則四邊形是平行四邊形,得,
所以.
而平面,平面,所以平面.
(2)由(1)可知,平面,所以點M到平面的距離與點N到平面的距離相等,則三棱錐的體積
.
由,,得為正三角形,
而F為中點,所以,從而,且.
又平面,得,從而,,
所以平面,且.
所以,
即三棱錐的體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017 版)規(guī)定了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標(biāo)值滿分為分,分值高者為優(yōu)),則下面敘述正確的是( )
(注:雷達圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),可用于對研究對象的多維分析)
A.甲的數(shù)據(jù)分析素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)
C.乙的六大素養(yǎng)中邏輯推理最差
D.乙的六大素養(yǎng)整體水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且經(jīng)過點,過左焦點且不與軸重合的直線與橢圓交于點,兩點.
(1)求橢圓的方程;
(2)若直線,,的斜率之和為0,求直線的方程;
(3)設(shè)弦的垂直平分線分別與直線,橢圓的右準(zhǔn)線交于點,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,直線與拋物線C交于A,B兩點,若,則.
(1)求拋物線C的方程;
(2)分別過點A,B作拋物線C的切線、,若,分別交x軸于點M,N,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項目.為預(yù)估今年7月份游客購買水果的情況,隨機抽樣統(tǒng)計了去年7月份100名游客的購買金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:
(1)請用抽樣的數(shù)據(jù)估計今年7月份游客人均購買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點作代表).
(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為“水果達人”與性別有關(guān)系?
水果達人 | 非水果達人 | 合計 | |
男 | 10 | ||
女 | 30 | ||
合計 |
(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.若每斤水果10元,你打算購買12斤水果,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
附:參考公式和數(shù)據(jù):,.臨界值表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)直線l截圓C的弦長是半徑長的倍,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com