【題目】已知拋物線的焦點為F,直線與拋物線C交于A,B兩點,若,則.
(1)求拋物線C的方程;
(2)分別過點A,B作拋物線C的切線、,若,分別交x軸于點M,N,求四邊形面積的最小值.
【答案】(1);(2).
【解析】
(1)設(shè),,則方程與拋物線方程聯(lián)立,可得,根據(jù)拋物線的定義可得解得,可得拋物線C的方程為.
(2)根據(jù),再換元得,利用導(dǎo)數(shù)得單調(diào)性,利用單調(diào)性可得最值.
(1)拋物線的焦點為,
設(shè),,則方程與拋物線方程聯(lián)立,
整理得,,,
若,根據(jù)拋物線的定義可得,
∴,即拋物線C的方程為.
(2)由(1)知且,,,,
所以切線的方程為即,①
同理切線的方程為,②
聯(lián)立①②得,
即切線與的交點為,
由切線,得,同理可得,
∴
又∵,
點P到直線的距離為
∴,
∴四邊形的面積
令,則,
時,成立,S單調(diào)遞增,
∴當(dāng),即時,四邊形的面積的最小值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的實常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個不同的零點,
(。┣髮崝(shù)的取值范圍;
(ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機(jī)選取了50名購買該家電的消費者,讓他們根據(jù)實際使用體驗進(jìn)行評分.
(Ⅰ)設(shè)消費者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價與年齡有關(guān).
好評 | 差評 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨立性檢驗中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】勞動教育是中國特色社會主義教育制度的重要內(nèi)容,某高中計劃組織學(xué)生參與各項職業(yè)體驗,讓學(xué)生在勞動課程中掌握一定勞動技能,理解勞動創(chuàng)造價值,培養(yǎng)勞動自立意識和主動服務(wù)他人、服務(wù)社會的情懷.學(xué)校計劃下周在高一年級開設(shè)“縫紉體驗課”,聘請“織補匠人”李阿姨給同學(xué)們傳授織補技藝。高一年級有6個班,李阿姨每周一到周五只有下午第2節(jié)課的時間可以給同學(xué)們上課,所以必須安排有兩個班合班上課,高一年級6個班“縫紉體驗課”的不同上課順序有( )
A.600種B.3600種C.1200種D.1800種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示七面體中,,平面,平面平面,四邊形是邊長為2的菱形,,,M,N分別為,的中點.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,,,,點E是CD邊的中點,將沿AE折起,使點D到達(dá)點P的位置,且.
(1)求證;平面平面ABCE;
(2)求點E到平面PAB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知四棱錐P—ABCD的底面ABCD是平行四邊形,PA⊥面ABCD,M是AD的中點,N是PC的中點.
(1)求證:MN∥面PAB;
(2)若平面PMC⊥面PAD,求證:CM⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.(為自然對數(shù)的底數(shù))
(1)設(shè);
①若函數(shù)在處的切線過點,求的值;
②當(dāng)時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設(shè)函數(shù),且,求證:當(dāng)時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com