(本小題滿分12分)
如圖,在底面為直角梯形的四棱錐P—ABCD中,,
平面
(1)求證:平面PAC;
(2) 求二面角的大小.

(1)見解析;(2)二面角的大小為.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設(shè)為棱上的點,滿足異面直線所成的角為,求的長.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 如圖,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求證:P、C、D、Q四點共面;
(2)求證:QD⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,的中點,
(1)設(shè)的中點,證明:平面;
(2)在內(nèi)是否存在一點,使平面,若存在,請找出點M,并求FM的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)如圖,在直三棱柱中,,點的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

矩形中,⊥面,上的點,且⊥面,、交于點.
(1)求證:
(2)求證://面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點,且=λ (0<λ<1).

(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時?平面BEF⊥平面ACD. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正△ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。
(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角E—DF—C的余弦值;
(3)在線段BC上是否存在一點P,使AP⊥DE?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案