(本小題滿分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動(dòng)點(diǎn),且==λ (0<λ<1).
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí)?平面BEF⊥平面ACD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,,,點(diǎn)為的中點(diǎn),為中點(diǎn).
(1)求證:平面⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在底面為直角梯形的四棱錐P—ABCD中,,
平面
(1)求證:平面PAC;
(2) 求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,點(diǎn)在圓上,,交于點(diǎn),平面,,.
(Ⅰ)證明:;
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點(diǎn),.
(1)證明:;
(2)求四棱錐與圓柱的體積比;
(3)若,求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
如圖,多面體中,兩兩垂直,平面平面,
平面平面,.
(1)證明四邊形是正方形;
(2)判斷點(diǎn)是否四點(diǎn)共面,并說(shuō)明為什么?
(3)連結(jié),求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的 底面為圓柱
底面的內(nèi)接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設(shè),在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自三棱柱內(nèi)的概率為。
(i)當(dāng)點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)如果平面與平面所成的角為。當(dāng)取最大值時(shí),求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com