分析 方法一:設(shè)直線的斜率,代入橢圓方程,根據(jù)韋達(dá)定理及中點(diǎn)坐標(biāo)公式,即可求得直線的斜率,求得直線方程;
方法二:設(shè)弦的兩端點(diǎn)坐標(biāo)為(x1,y1)、(x2,y2),代入橢圓方程,作差,即可求得直線的斜率,求得的直線方程;
方法三:設(shè)過(guò)P的弦與橢圓相交于M(1+m,1+n),N(1-m,1-n),代入橢圓方程,作差,即可求得m+2n=0,則直線k=$\frac{n}{m}$=-$\frac{1}{2}$,求得的直線方程;
解答 解:解法一:易知引弦所在直線的斜率存在,則設(shè)其方程為y-1=k(x-1),
弦的兩端點(diǎn)為(x1,y1),(x2,y2).
由$\left\{\begin{array}{l}{y-1=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得(2k2+1)x2-4k(k-1)x+2(k2-2k-1)=0,
∴x1+x2=$\frac{4k(k-1)}{2{k}^{2}+1}$.
又∵x1+x2=2,∴$\frac{4k(k-1)}{2{k}^{2}+1}$=2,得k=-$\frac{1}{2}$.
故弦所在直線方程為y-1=-$\frac{1}{2}$(x-1),即x+2y-3=0.
解法二:由于此弦所在直線的斜率存在,所以設(shè)斜率為k,且設(shè)弦的兩端點(diǎn)坐標(biāo)為(x1,y1)、(x2,y2),
則$\frac{{x}_{1}^{2}}{4}$+$\frac{{y}_{1}^{2}}{2}$=1,$\frac{{x}_{2}^{2}}{4}$+$\frac{{y}_{2}^{2}}{2}$=1,兩式相減得
$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{2}$=0.
∵x1+x2=2,y1+y2=2,
∴$\frac{x1-x2}{2}$+(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$.
∴此弦所在直線方程為y-1=-$\frac{1}{2}$(x-1),即x+2y-3=0.
∴此弦所在的直線方程x+2y-3=0.
方法三:由題意可知:過(guò)P的弦與橢圓相交于M(1+m,1+n),N(1-m,1-n),
由M,N在橢圓方程:$\frac{(1+m)^{2}}{4}+\frac{(1+n)^{2}}{2}=1$,$\frac{(1-m)^{2}}{4}+\frac{(1-n)^{2}}{2}=1$,
兩式相減得:m+2n=0,
則直線MN的斜率k=$\frac{(1+n)-(1-n)}{(1+m)-(1-m)}$=$\frac{n}{m}$=-$\frac{1}{2}$,
此弦所在直線方程為y-1=-$\frac{1}{2}$(x-1),即x+2y-3=0.
點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,考查直線的點(diǎn)斜式方程,點(diǎn)差法的應(yīng)用,方法多,注意靈活應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
月份x | 1 | 2 | 3 | 4 | 5 |
y(萬(wàn)盒) | 4 | 4 | 5 | 6 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | l∥面ABCD | B. | l⊥AC | ||
C. | 面MEF與面MPQ垂直 | D. | 當(dāng)x變化時(shí),l是定直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com