科目:高中數(shù)學(xué) 來源: 題型:解答題
某民營企業(yè)生產(chǎn)兩種產(chǎn)品
,根據(jù)市場調(diào)查與預(yù)測,
產(chǎn)品的利潤與投資成正比,其關(guān)系如圖甲,
產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙(注:利潤與投資單位:萬元)
.
(Ⅰ)分別將兩種產(chǎn)品的利潤表示為投資
(萬元)的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)已籌集到10萬元資金,并全部投入
兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大
利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在
上為增函數(shù),且
,
為常數(shù),
.
(1)求的值;
(2)若在
上為單調(diào)函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)是定義在
上的函數(shù),用分點
將區(qū)間任意劃分成
個小區(qū)間,如果存在一個常數(shù)
,使得和式
(
)恒成立,則稱
為
上的有界變差函數(shù).
(1)函數(shù)在
上是否為有界變差函數(shù)?請說明理由;
(2)設(shè)函數(shù)是
上的單調(diào)遞減函數(shù),證明:
為
上的有界變差函數(shù);
(3)若定義在上的函數(shù)
滿足:存在常數(shù)
,使得對于任意的
、
時,
.證明:
為
上的有界變差函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ) 討論函數(shù)的單調(diào)性;
(Ⅱ)若時,恒有
試求實數(shù)
的取值范圍;
(Ⅲ)令
試證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科做) 設(shè)函數(shù)
(1)若a>0,求函數(shù)的最小值;
(2)若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),
求f (x)>b恒成立的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com