已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓數(shù)學(xué)公式的右焦點(diǎn)重合,直線l過點(diǎn)F交拋物線于A、B兩點(diǎn),點(diǎn)A、B在拋物線C的準(zhǔn)線上的射影分別為點(diǎn)D、E.
(Ⅰ)求拋物線C的過程;
(Ⅱ)若直線l交y軸于點(diǎn)M,且數(shù)學(xué)公式,對任意的直線l,m+n是否為定值?若是,求出m+n的值,否則,說明理由.

解:(Ⅰ)∵橢圓的右焦點(diǎn)F(1,0),∴,
∴拋物線C的方程為y2=4x(3分)
(Ⅱ)由已知得直線l的斜率一定存在,所以設(shè)l:y=k(x-1),l與y軸交于M(0,-k),設(shè)直線l交拋物線于A(x1,y1),B(x2,y2),

∴△=4(k2+2)2-4k4=16(k2+1)>0
(7分)
又由,∴(x1,y1+k)=m(1-x1,-y1),∴x1=m(1-x1),
即m=,同理,(9分)

所以,對任意的直線l,m+n為定值-1(12分)
分析:(Ⅰ)由橢圓的右焦點(diǎn)F(1,0),知,由此能求出拋物線C的方程.
(Ⅱ)設(shè)直線l:y=k(x-1),l與y軸交于M(0,-k),設(shè)直線l交拋物線于A(x1,y1),B(x2,y2),由,再由根的判別式和韋達(dá)定理能推導(dǎo)出對任意的直線l,m+n為定值.
點(diǎn)評:本題考查拋物線方程的求法和判斷m+n是否為定值.解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活運(yùn)用圓錐曲線的性質(zhì),合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個動點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動點(diǎn),過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊答案