【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,分別為,的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求多面體的體積.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)取的中點.連接,可證,,然后利用平面平面,可證平面.(Ⅱ)將多面體分為四棱錐和三棱錐兩部分,將轉化為,然后利用四棱錐和三棱錐的體積公式分別求出然后求和即可.

解:(Ⅰ)如圖,取的中點.連接,.

在矩形中,∵分別為線段,的中點,

.

平面,平面,

平面.

中,∵,分別為線段,的中點,

.

平面平面,

平面.

,平面,

∴平面平面

平面,∴平面.

(Ⅱ)如圖,過點.

∵平面平面,平面平面,平面,

平面.

同理平面.

連接,.中,∵,,

.

同理.

,∴等邊的高為,即.

連接.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于素數(shù)p,定義集合 .

.試求所有的素數(shù)p,使得

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為t為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程是,曲線的極坐標方程是

1)求直線l和曲線的直角坐標方程,曲線的普通方程;

2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個公共焦點F.設拋物線C與橢圓E在第一象限的交點為M.滿足|MF|.

1)求橢圓E的標準方程;

2)過點P1,)的直線交拋物線CA、B兩點,直線PO交橢圓E于另一點Q.PAB的中點,求△QAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,點為拋物線上的動點,點為其準線上的動點,當為等邊三角形時,則的外接圓的方程為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結論是(

A. 99%以上的把握認為“愛好該項運動與性別無關

B. 99%以上的把握認為“愛好該項運動與性別有關”

C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”

D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合,對于正整數(shù)m,集合S的任一m元子集中必有一個數(shù)為另外m-1個數(shù)乘積的約數(shù).則m的最小可能值為__________。

查看答案和解析>>

同步練習冊答案