10.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是( 。
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

分析 根據(jù)函數(shù)f(x)的單調性得到2a≥$\frac{1+lnx}{x}$,設h(x)=$\frac{1+lnx}{x}$,根據(jù)函數(shù)的單調性求出a的范圍即可.

解答 解:∵f(x)是減函數(shù),∴0<a<1,
當x≥1時,f′(x)=1+lnx-2ax≤0,
2a≥$\frac{1+lnx}{x}$,設h(x)=$\frac{1+lnx}{x}$,
則h′(x)=$\frac{-lnx}{x^2}$=0,x=1,
故h(x)在x=1處取得最大值1,
2a≥1,a≥$\frac{1}{2}$,
又a>f(1)=-a,
故選:D.

點評 本題考查了函數(shù)的單調性問題,考查函數(shù)恒成立問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.如圖所示是y=f(x)的導數(shù)圖象,則下列判斷中正確結論的序號是②④.
①f(x)在(-3,1)上是增函數(shù);
②x=-1是f(x)的極小值點;
③x=2是f(x)的極小值點;
④f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且x>0時,f(x)<0.
(1)求證:f(x)在R上是奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)若f(1)=-$\frac{2}{3}$,求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知p:|1-$\frac{x-1}{3}$|≥2,q:x2-2x+1-m2≥0(m>0),若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={1,2},B={1,2,3},寫出分別從集合A和B中隨機取一個數(shù)的所有可能結果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知數(shù)列{an}是等比數(shù)列,且a2=-$\frac{1}{4}$,a5=2,則{an}的公比q為( 。
A.$-\root{3}{2}$B.$-\frac{1}{2}$C.-2D.$-\root{3}{0.5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.電視臺與某廣告公司簽約播放兩部影片集,其中影片集甲每集播放時間為19分鐘(不含廣告時間,下同),廣告時間為1分鐘,收視觀眾為60萬;影片集乙每集播放時間為7分鐘,廣告時間為1分鐘,收視觀眾為20萬,廣告公司規(guī)定每周至少有7分鐘廣告,而電視臺每周只能為該公司提供不多于80分鐘的節(jié)目時間(含廣告時間).
(Ⅰ)問電視臺每周應播放兩部影片集各多少集,才能使收視觀眾最多;
(Ⅱ)在獲得最多收視觀眾的情況下,影片集甲、乙每集可分別給廣告公司帶來a和b(萬元)的效益,若廣告公司本周共獲得3萬元的效益,記S=$\frac{16}{a}$+$\frac{10}$為效益調和指數(shù)(單位:萬元),求效益調和指數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.古有“紅綠豆分”題,農民收獲綠豆1000kg,驗得綠豆內夾紅豆(大小相當),抽樣取綠豆一把,數(shù)得400粒內夾紅豆20粒,則這批綠豆內夾紅豆約為50kg.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某校有40個班,每班55人,每班選派3人參加“學代會”,這個問題中樣本容量是( 。
A.40B.50C.120D.155

查看答案和解析>>

同步練習冊答案