【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則( )
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器由于使用時間較長,生產的零件有一些缺損.按不同轉速生產出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:
轉速x(轉/秒) | 16 | 4 | 12 | 8 |
每小時生產有缺損零件數(shù)y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關,求出回歸直線方程;
(3)若實際生產中,允許每小時的產品中有缺損的零件最多為10個,那么,機器的運轉速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若a>0,b>0,則稱 為a,b的調和平均數(shù).如圖,點C為線段AB上的點,且AC=a,BC=b,點O為線段AB中點,以AB為直徑做半圓,過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調和平均數(shù)的線段,以及由此得到的不等關系分別是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓方程;
(2)設不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線C1:x2=2py的焦點在拋物線C2:,點P是拋物線C1上的動點.
(1)求拋物線C1的方程及其準線方程;
(2)過點P作拋物線C2的兩條切線,M,N分別為兩個切點,設點P到直線MN的距離為d,求d的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的導函數(shù)為f′(x),對任意的x∈R,都有2f′(x)>f(x)成立,則( )
A. 3f(2ln 2)>2f(2ln 3)
B. 3f(2ln 2)<2f(2ln 3)
C. 3f(2ln 2)=2f(2ln 3)
D. 3f(2ln 2)與2f(2ln 3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求 的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:|OR||OS|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).
(1)當a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;
(2)當a>0時,求函數(shù)y=f(x)的單調區(qū)間和極值;
(3)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量y(件) | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回歸直線方程求回歸直線方程.
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是5元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com