分析 (1)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)極值的關系即可求出;
(2)問題轉化為m<x-ex$\sqrt{x}$,在(0,+∞)有解即可,構造函數(shù),再求導,求出函數(shù)的最值,問題得以解決.
解答 解:(1)f(x)=ax+lnx的定義域為(0,+∞),
∵${f^'}(x)=a+\frac{1}{x}=\frac{ax+1}{x}$
當a≥0時,f′(x)>0恒成立,則y=f(x)在(0,+∞)上為單調(diào)遞增,則無極值;
當a<0時,y=f(x)在$(0,-\frac{1}{a})$上單調(diào)遞增,在$(-\frac{1}{a},+∞)$上單調(diào)遞減,
則$x=-\frac{1}{a}$為y=f(x)的極大值,極大值為f(-$\frac{1}{a}$)=-1-ln(-a),無極小值,
(2)由題意ex<$\frac{x-m}{\sqrt{x}}$有解,即ex$\sqrt{x}$<x-m有解,因此只需m<x-ex$\sqrt{x}$,在(0,+∞)有解即可,
設h(x)=x-ex$\sqrt{x}$,
∴h′(x)=1-ex$\sqrt{x}$-$\frac{{e}^{x}}{2\sqrt{x}}$=1-ex($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$),
∵$\sqrt{x}$+$\frac{1}{2\sqrt{x}}$≥2$\sqrt{\frac{1}{2}}$>1,且x∈(0,+∞)時,ex>1,
∴1-ex($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$)<0,
即h′(x)<0,
∴h(x)在(0,+∞)遞減,
∴h(x)<h(0)=0,
∴m<0,
故m的取值范圍為(-∞,0).
點評 本題考查了導數(shù)的綜合應用及恒成立問題與最值問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
測試指標 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com