【題目】已知圓C:(x﹣2)2+y2=9,直線l:x+y=0.
(1)求過圓C的圓心且與直線l垂直的直線n的方程;
(2)求與圓C相切,且與直線l平行的直線m的方程.

【答案】
(1)解:設(shè)直線n的方程為x﹣y+b=0

∵直線n過圓C的圓心(2,0),所以2﹣0+b=0,∴b=﹣2

∴直線n的方程為x﹣y﹣2=0


(2)解:∵直線m∥直線x+y=0,

∴設(shè)m:x+y+c=0,

∵直線m與圓C相切,

∴3= ,

解得:c=﹣2±3

得直線m的方程為:x+y﹣2+3 =0或x+y﹣2﹣3 =0


【解析】(1)設(shè)直線n的方程為x﹣y+b=0,利用直線n過圓C的圓心(2,0),求出b,可得直線方程;(2)由兩直線平行時斜率相等,根據(jù)直線l方程設(shè)所求切線方程為x+y+c=0,由直線與圓相切時,圓心到切線的距離d等于圓的半徑r,利用點到直線的距離公式列出關(guān)于c的方程,求出方程的解得到c的值,即可確定出直線m的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸非負(fù)半軸為始邊,若終邊經(jīng)過點P(x0 , y0),且|OP|=r(r>0),定義sicosθ= ,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學(xué)得到如下結(jié)論: ①該函數(shù)是偶函數(shù);
②該函數(shù)的一個對稱中心是( ,0);
③該函數(shù)的單調(diào)遞減區(qū)間是[2kπ﹣ ,2kπ+ ],k∈Z.
④該函數(shù)的圖象與直線y= 沒有公共點;
以上結(jié)論中,所有正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.

(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的圖象在點處的切線與直線平行.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:

(1)把直線的參數(shù)方程化為極坐標(biāo)方程,把曲線的極坐標(biāo)方程化為普通方程;

(2)求直線與曲線交點的極坐標(biāo)(≥0,0≤).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=1+ 與直線kx﹣y﹣2k+5=0有兩個交點時,實數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1,求曲線在點處的切線方程;

2若曲線與直線只有一個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某產(chǎn)品的年固定成本為100萬元,每生產(chǎn)1千件需另投入27萬元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且.

⑴ 寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

⑵ 當(dāng)年產(chǎn)量為多少千件時,該公司在這一產(chǎn)品的生產(chǎn)中所獲年利潤最大?(注:年利潤=年銷售收入年總成本).

查看答案和解析>>

同步練習(xí)冊答案