【題目】如圖已知四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC,AD的中點(diǎn).

(1)若PD=1,求異面直線(xiàn)PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值為 ,求四棱錐P﹣ABCD的體積.

【答案】
(1)證明:E,F(xiàn)分別為棱BC,AD的中點(diǎn),ABCD是邊長(zhǎng)為2的正方形

∴DF∥BE且DF=BE

∴DFBE為平行四邊形

∴DE∥BF

∴∠PBF是PB與DE的所成角

△PBF中,BF= ,PF=, ,PB=3,

∴cos∠PBF= ,

∴異面直線(xiàn)PB和DE所成角的余弦值為 ;


(2)解:如圖,以D為原點(diǎn),射線(xiàn)DA,DC,DP分別為x,y,z軸建立空間直角坐標(biāo)系.設(shè)PD=a,

可得如下點(diǎn)的坐標(biāo):

P(0,0,a),F(xiàn)(1,0,0),B(2,2,0)

則有: =(1,0,﹣a), =(1,2,0)

因?yàn)镻D⊥底面ABCD,所以平面ABCD的一個(gè)法向量為 =(0,0,1)

設(shè)平面PFB的一個(gè)法向量為 =(x,y,z),則可得 ,令x=1,得z= ,y=﹣ ,

所以 =(1,﹣ ,

由已知,二面角P﹣BF﹣C的余弦值為 ,所以得 = ,解得a=2.

因?yàn)镻D是四棱錐P﹣ABCD的高,

所以其體積為VPABCD= ×2×4=


【解析】(1)根據(jù)一對(duì)對(duì)邊平行且相等,得到一個(gè)四邊形是平行四邊形,根據(jù)平行四邊形對(duì)邊平行,把兩條異面直線(xiàn)所成的角表示出來(lái),放到△PBF中,利用余弦定理求出角的余弦值.(2)以D為原點(diǎn),射線(xiàn)DA,DC,DP分別為x,y,z軸建立空間直角坐標(biāo)系,設(shè)出線(xiàn)段的長(zhǎng),根據(jù)條件中所給的兩個(gè)平面的二面角的值,求出設(shè)出的a的值,再求出四棱錐的體積.
【考點(diǎn)精析】本題主要考查了異面直線(xiàn)及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線(xiàn)所成角的求法:1、平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位小學(xué)生各有2008年奧運(yùn)吉祥物“福娃”5個(gè)(其中“貝貝”、“晶晶”、“歡歡”、“迎迎”和“妮妮各一個(gè)”),現(xiàn)以投擲一個(gè)骰子的方式進(jìn)行游戲,規(guī)則如下:當(dāng)出現(xiàn)向上的點(diǎn)數(shù)是奇數(shù)時(shí),甲贏得乙一個(gè)福娃;否則乙贏得甲一個(gè)福娃,規(guī)定擲骰子的次數(shù)達(dá)9次時(shí),或在此前某人已贏得所有福娃時(shí)游戲終止.記游戲終止時(shí)投擲骰子的次數(shù)為ξ
(1)求擲骰子的次數(shù)為7的概率;
(2)求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中圓C的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);

(2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中,所得數(shù)值最小的是( )
A.sin50°cos39°﹣sin40°cos51°
B.﹣2sin240°+1
C.2sin6°cos6°
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面平面分別為棱的中點(diǎn).求證:

(1)平面;

(2)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A. 選修4-1:幾何證明選講

如圖,已知為圓的一條弦,點(diǎn)為弧的中點(diǎn),過(guò)點(diǎn)任作兩條弦分別交于點(diǎn).

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示,函數(shù)g(x)=f(x+ ),則下列結(jié)論正確的是(

A.函數(shù)g(x)的奇函數(shù)
B.函數(shù)f(x)與g(x)的圖象均關(guān)于直線(xiàn)x=﹣ π對(duì)稱(chēng)
C.函數(shù)f(x)與g(x)的圖象均關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
D.函數(shù)f(x)與g(x)在區(qū)間(﹣ ,0)上均單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(sinx+ cosx)2﹣2.
(1)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[﹣ , ],求函數(shù)g(x)= f2(x)﹣f(x+ )﹣1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是偶函數(shù),且f(x+ )=f( ﹣x),當(dāng)﹣ ≤x≤0時(shí),f(x)=( x﹣1,記an=f( ),n∈N+ , 則a2046的值為( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案