【題目】某綠色有機(jī)水果店中一款有機(jī)草莓味道鮮甜,店家每天以每斤元的價格從農(nóng)場購進(jìn)適量草莓,然后以每斤元的價格出售,如果當(dāng)天賣不完,剩下的草莓由果汁廠以每斤元的價格回收.

(1)若水果店一天購進(jìn)斤草莓,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:斤,)的函數(shù)解析式;

(2)水果店記錄了天草莓的日需求量(單位:斤),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

14

22

14

16

15

13

6

①假設(shè)水果店在這天內(nèi)每天購進(jìn)斤草莓,求這天的日利潤(單位:元)的平均數(shù);

②若水果店一天購進(jìn)斤草莓,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于元的概率.

【答案】(1);(2)①,②0.64

【解析】

(1)對需求量n進(jìn)行分類,時,進(jìn)貨有剩余,利潤;時,進(jìn)貨能全部出清,利潤.

(2)根據(jù)不同的需求量,求出各自的利潤,再求平均數(shù).由利潤不少于元,求得需求量的范圍,結(jié)合頻數(shù)可求概率.

(1)當(dāng)日需求量時,利潤;

當(dāng)日需求量時,利潤.

所以當(dāng)天的利潤關(guān)于當(dāng)天需求量的函數(shù)解析式為

(2)①假設(shè)水果店在這天內(nèi)每天購進(jìn)斤草莓,則:

日需求量為斤時,利潤;日需求量為斤時,利潤

日需求量為斤時,利潤;日需求量不小于時,利潤.

故這天的日利潤(單位:元)的平均數(shù)為:

,解得(元).

②利潤不低于元時,當(dāng)日需求量當(dāng)且僅當(dāng)不少于斤.以頻率預(yù)估概率,

得當(dāng)天的利潤不少于元的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程的曲線即為函數(shù)的圖象,對于函數(shù),有如下結(jié)論:上單調(diào)遞減;函數(shù)存在零點;函數(shù)的值域是R若函數(shù)的圖象關(guān)于原點對稱,則函數(shù)的圖象就是確定的曲線

其中所有正確的命題序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, ,點在線段上.

() 若點的中點,求證:平面

() 求證:平面平面;

() 當(dāng)平面與平面所成二面角的余弦值為時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會為了解高二年級600名學(xué)生課余時間參加中華傳統(tǒng)文化活動的情況(每名學(xué)生最多參加7).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

則以下四個結(jié)論中正確的是( )

A.表中的數(shù)值為10

B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學(xué)生約為108

C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學(xué)生約為216

D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知動點M與到點N(3,0)的距離比動點M到直線x=-2的距離大1,記動圓M的軌跡為曲線C.

(1)求曲線C的方程;

(2)若直線l與曲線C相交于A,B:兩點,且(O為坐標(biāo)原點),證明直線l經(jīng)過定點H,并求出H點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知位于軸左側(cè)的圓軸相切于點且被軸分成的兩段圓弧長之比為,直線與圓相交于,兩點,且以為直徑的圓恰好經(jīng)過坐標(biāo)原點.

1)求圓的方程;

2)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知棱長為3的正方體ABCDA1B1C1D1中,MBC的中點,點P是側(cè)面DCC1D1內(nèi)(包括邊界)的一個動點,且滿足∠APD=∠MPC.則當(dāng)三棱錐PBCD的體積最大時,三棱錐PBCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓C1x2+y210x+4y+250與圓C2x2+y214x+2y+250,點AB分別是C1,C2上的動點,M為直線yx上的動點,則|MA|+|MB|的最小值為( 。

A.3B.3C.5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間,,,的長度均為,其中.

(1)已知函數(shù)的定義域為,值域為,寫出區(qū)間長度的最大值與最小值.

(2)已知函數(shù)的定義域為實數(shù)集,滿足 (的非空真子集).集合, ,求的值域所在區(qū)間長度的總和.

(3)定義函數(shù),判斷函數(shù)在區(qū)間上是否有零點,并求不等式解集區(qū)間的長度總和.

查看答案和解析>>

同步練習(xí)冊答案