如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的圓心在直線上,且與直線相切于點(diǎn).
(Ⅰ)求圓方程;
(Ⅱ)點(diǎn)與點(diǎn)關(guān)于直線對稱.是否存在過點(diǎn)的直線,與圓相交于兩點(diǎn),且使三角形(為坐標(biāo)原點(diǎn)),若存在求出直線的方程,若不存在用計(jì)算過程說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),直線:,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)A作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:與直線l:,且直線l被圓C截得的弦長為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)時,求過點(diǎn)(3,5)且與圓C相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知圓C的方程為x2+(y﹣4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn).直線l:y=kx與圓C交于M,N兩點(diǎn).
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)Q(m,n)是線段MN上的點(diǎn),且.請將n表示為m的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長為4,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的半徑為2,圓心在x軸的正半軸上,直線與圓C相切.
(I)求圓C的方程;
(II)過點(diǎn)Q(0,-3)的直線與圓C交于不同的兩點(diǎn)A、B,當(dāng)時,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com