【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取1000人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

總計

認為共享產(chǎn)品對生活有益

400

300

700

認為共享產(chǎn)品對生活無益

100

200

300

總計

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.1%的前提下,認為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:

購物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1) 可以(2)55

【解析】試題分析:依題意,計算的觀測值,即可得到結(jié)論;

依題意, 的可能取值為, , ,據(jù)此得出分布列,計算數(shù)學(xué)期望

解析:(1)依題意,在本次的實驗中, 的觀測值,

故可以在犯錯誤的概率不超過0.1%的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關(guān)系;

2)依題意, 的可能取值為40,70,100,

,

的分布列為:

40

70

100

故所求數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點.

(1)求橢圓方程;

(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)與函數(shù)的圖像關(guān)于直線對稱,函數(shù) .

(Ⅰ)若,且關(guān)于的方程有且僅有一個解,求實數(shù)的值;

(Ⅱ)當(dāng)時,若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在曲線上,過原點,且與軸的另一個交點為,若線段,和曲線上分別存在點、點和點,使得四邊形(點, , 順時針排列)是正方形,則稱點為曲線完美點.那么下列結(jié)論中正確的是( ).

A. 曲線上不存在完美點

B. 曲線上只存在一個完美點,其橫坐標(biāo)大于

C. 曲線上只存在一個完美點,其橫坐標(biāo)大于且小于

D. 曲線上存在兩個完美點,其橫坐標(biāo)均大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級,某品牌飲料公司對微商銷售情況進行中期調(diào)研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為 為其焦點,過不在拋物線上的一點作此拋物線的切線, 為切點.且.

(Ⅰ)求證:直線過定點;

(Ⅱ)直線與曲線的一個交點為,的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“禿發(fā)”是一種常見的毛發(fā)疾病,隨著發(fā)病人群年齡結(jié)構(gòu)的年變化,逐漸引起了社會的廣泛關(guān)注.一個人出生時頭發(fā)數(shù)量約為100000根,數(shù)學(xué)徐老師建立了“禿發(fā)”函數(shù)模型作預(yù)估:一個人歲時的頭發(fā)根數(shù)為,其中稱為“脫發(fā)指數(shù)”.

1)杜老師5歲時有74375根頭發(fā),請依據(jù)模型求出杜老師的“脫發(fā)指數(shù)”的值;

2)徐老師的學(xué)生認為“禿發(fā)”函數(shù)模型中有兩個缺點:①頭發(fā)的根數(shù)應(yīng)該為整數(shù);②頭發(fā)的根數(shù)不能為負數(shù),徐老師感覺很有道理,將模型作了兩處修正,請寫出修正后(1)問中杜老師的“禿發(fā)”函數(shù)模型,并求出杜老師幾歲時頭發(fā)最多.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列四個命題:

①函數(shù)滿足:對任意;

②函數(shù)均為奇函數(shù);

③若函數(shù)上有意義,則的取值范圍是

④設(shè)是關(guān)于的方程,()的兩根,;

其中正確命題的序號是__________

查看答案和解析>>

同步練習(xí)冊答案