【題目】“禿發(fā)”是一種常見的毛發(fā)疾病,隨著發(fā)病人群年齡結(jié)構(gòu)的年變化,逐漸引起了社會的廣泛關(guān)注.一個人出生時頭發(fā)數(shù)量約為100000根,數(shù)學徐老師建立了“禿發(fā)”函數(shù)模型作預(yù)估:一個人歲時的頭發(fā)根數(shù)為,其中稱為“脫發(fā)指數(shù)”.

1)杜老師5歲時有74375根頭發(fā),請依據(jù)模型求出杜老師的“脫發(fā)指數(shù)”的值;

2)徐老師的學生認為“禿發(fā)”函數(shù)模型中有兩個缺點:①頭發(fā)的根數(shù)應(yīng)該為整數(shù);②頭發(fā)的根數(shù)不能為負數(shù),徐老師感覺很有道理,將模型作了兩處修正,請寫出修正后(1)問中杜老師的“禿發(fā)”函數(shù)模型,并求出杜老師幾歲時頭發(fā)最多.

【答案】1;(2,杜老師4歲時頭發(fā)最多.

【解析】

1)將代入求解即可求出的值;

2)引入求整數(shù)的符號,且將函數(shù)寫成分段函數(shù)的形式,當函數(shù)值為負數(shù)時變?yōu)槌?shù)0即可,最后結(jié)合基本不等式求出即可.

1)依題意,當時,,

解得,,所以,杜老師的“脫發(fā)指數(shù)”的值為3125

2)依題意可得,,

其中表示不超過x的最大整數(shù),

,

當且僅當時,等號成立,此時,.

即杜老師4歲時頭發(fā)最多.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為且滿足表示的面積.

(1)證明: 平面;

(2)當時,二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取1000人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

總計

認為共享產(chǎn)品對生活有益

400

300

700

認為共享產(chǎn)品對生活無益

100

200

300

總計

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.1%的前提下,認為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:

購物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求的分布列和數(shù)學期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市小型機動車駕照科二考試中共有5項考察項目,分別記作,,⑤.

1)某教練將所帶10名學員科二模擬考試成績進行統(tǒng)計(如圖1所示),并打算從恰有2項成績不合格的學員中任意抽出2人進行補測(只測不合格的項目),求補測項目種類不超過3項的概率;

2)如圖2,某次模擬演練中,教練要求學員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗,學員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機會相等.CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學員甲能按教練要求完成任務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,焦點在軸上的橢圓經(jīng)過點,其中為橢圓的離心率.過點作斜率為的直線交橢圓兩點(軸下方).

(1)求橢圓的方程;

(2)過原點且平行于的直線交橢圓于點, ,求的值;

(3)記直線軸的交點為.若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),是定義域為的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),,求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體中,與平面所成角的正弦值為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當時,求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

查看答案和解析>>

同步練習冊答案