【題目】為響應黨中央號召,學校以“我們都是追夢人”為主題舉行知識競賽,F(xiàn)有10道題,其中6道甲類題,4道乙類題,王同學從中任取3道題解答.

(Ⅰ)求王同學至少取到2道乙類題的概率;

(Ⅱ)如果王同學答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立,已知王同學恰好選中2道甲類題,1道乙類題,用表示王同學答對題的個數(shù),求隨機變量的分布列和數(shù)學期望.

【答案】(Ⅰ);(Ⅱ)見解析

【解析】

(Ⅰ)至少取到道乙類題的情況可分為:取到道和道乙類題,分別計算出兩種情況的取法,根據(jù)古典概型求得結果;(Ⅱ)首先確定所有可能的取值,再分別計算每個取值對應的概率,從而得到分布列;利用數(shù)學期望的公式求得期望.

(Ⅰ)設“王同學至少取到道乙類題”為事件

王同學取到道乙類題共有種取法

王同學取到道乙類題共有種取法

(Ⅱ)的所有可能取值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,且過焦點的最短弦長為3.

1)求橢圓的標準方程;

2)設分別是橢圓的左、右焦點,過點的直線與曲線交于不同的兩點、,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間上任取一個數(shù)記為a,在區(qū)間上任取一個數(shù)記為b

a,,求直線的斜率為的概率;

a,,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,橫坐標不小于的動點在軸上的射影為,若.

(1)求動點的軌跡的方程;

(2)若點不在直線上,并且直線與曲線相交于兩個不同點.問是否存在常數(shù)使得當的值變化時,直線斜率之和是一個定值.若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,平面, 是線段的中垂線, 為線段上的點.

(Ⅰ)證明:平面平面;

(Ⅱ)若的中點,求異面直線所成角的正切值;

(Ⅲ)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面ABCD,四邊形AEFB為矩形,,,

1)求證:平面ADE;

2)求平面CDF與平面AEFB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),函數(shù)在區(qū)間上的最大值是2,則______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點,為線段上的一點.

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某日A, B, C三個城市18個銷售點的小麥價格如下表:

銷售點序號

所屬城市

小麥價格(元/噸)

銷售點序號

所屬城市

小麥價格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5個銷售點小麥價格的中位數(shù);

(Ⅱ)甲從B市的銷售點中隨機挑選一個購買1噸小麥,乙從C市的銷售點中隨機挑選一個購買1噸小麥,求甲花費的費用比乙高的概率;

(Ⅲ)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A、B、C三個城市按照小麥價格差異性從大到小進行排序(只寫出結果).

查看答案和解析>>

同步練習冊答案