若x,y滿足不等式組
x-y+5≥0
x≤3
x+y-k≥0
且z=2x+4y的最小值為-6,則k的值為
0
0
分析:由目標(biāo)函數(shù)z=2x+4y的最小值是-6,我們可以畫出滿足條件
x-y+5≥0
x-3≤0
x+y-k≥0
的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)k的方程,解之即可得到k的取值.
解答:解:畫出x,y滿足的可行域
x-y+5≥0
x-3≤0
x+y-k≥0
如下圖:
由于目標(biāo)函數(shù)z=2x+4y的最小值是-6,
可得直線x=3與直線-6=2x+4y的交點(diǎn)A(3,-3),
使目標(biāo)函數(shù)z=2x+4y取得最小值,
將x=3,y=-3代入x+y-k=0得:
k=0,
故答案為:0.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問(wèn)題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足不等式組
x+y≥0
x2+y2≤1
,則2x+y的取值范圍是
[-
2
2
,
5
]
[-
2
2
,
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x,  1),
b
=(2,  y+z)
,且
a
b
.若x、y滿足不等式組
x-2y+2≥0
x+2y-2≥0
x≤2
,則z的取值范圍是
-5≤z≤-1
-5≤z≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足不等式組
x-y+2≥0
x+y+2≥0
2x-y-2≤0
,則3x-y的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x、y滿足不等式組
x+y≥0
x2+y2≤ 1
,則x<
3
y的概率是( 。
A、
1
2
B、
1
3
C、
5
12
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•崇明縣二模)若x,y滿足不等式組
x+y≤4
x-y≤2
x≥0
y≥0
,則目標(biāo)函數(shù)S=x+2y的最大值等于
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案