【題目】已知橢圓:經(jīng)過點,,直線:與橢圓相交于,兩點,與圓相切與點.
(1)求橢圓的方程;
(2)以線段,為鄰邊作平行四邊形,若點在橢圓上,且滿足(是坐標原點),求實數(shù)的取值范圍;
(3)是否為定值,如果是,求的值;如果不是,求的取值范圍.
【答案】(1);(2);(3)是定值,.
【解析】
(1)把兩點,代入方程可得橢圓的方程;
(2)先根據(jù)直線和圓相切,求出,然后聯(lián)立方程,結合韋達定理求出,結合平行四邊形性質和在橢圓上可得實數(shù)的取值范圍;
(3)根據(jù)直線和圓相切可以表示出切點坐標,把轉化為,結合向量運算及韋達定理可求.
(1)因為橢圓:經(jīng)過點,,
所以,解得,所以橢圓的方程為.
(2)因為直線:與圓相切,所以,
即①.
由得.
設,則,
.
由向量加法的平行四邊形法則,得,
因為所以.
由題意易知,
設,則,
,即.
因為在橢圓上,所以,
整理得②
由可得,所以, ,即或.
由①②可得,令,則,
因為所以,解得或,
綜上可得.
(3)由(2)知,
設,則,由為切點可知,所以,
解得.
.
所以是定值且定值為.
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理中是演繹推理的為( )
A. 由金、銀、銅、鐵可導電,猜想:金屬都可導電
B. 猜想數(shù)列的通項公式為
C. 半徑為的圓的面積,則單位圓的面積
D. 由平面直角坐標系中圓的方程為,推測空間直角坐標系中球的方程為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)《山東省全民健身實施計劃(2016-2020年)》,到2020年鄉(xiāng)鎮(zhèn)(街道)普遍建有“兩個一”工程,即一個全民健身活動中心或燈光籃球場、一個多功能運動場.某市把甲、乙、丙、丁四個多功能運動場全部免費為市民開放.
(1)在一次全民健身活動中,四個多功能運動場的使用場數(shù)如圖,用分層抽樣的方法從甲、乙、丙、丁四場館的使用場數(shù)中依次抽取,,,共25場,在,,,中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;
(2)設四個多功能運動場一個月內(nèi)各場使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的與數(shù)據(jù):
10 | 15 | 20 | 25 | 30 | 35 | 40 | |
2302 | 2708 | 2996 | 3219 | 3401 | 3555 | 3689 | |
2.49 | 2.99 | 3.55 | 4.00 | 4.49 | 4.99 | 5.49 |
(i)用最小二乘法求與之間的回歸直線方程;
(ii)叫做運動場月惠值,根據(jù)(i)的結論,試估計這四個多功能運動場月惠值最大時的值.
參考數(shù)據(jù)和公式:,,,,
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓:的離心率是,長軸是圓:的直徑.點是橢圓的下頂點,,是過點且互相垂直的兩條直線,與圓相交于,兩點,交橢圓于另一點.
(1)求橢圓的方程;
(2)當的面積取最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結論:
①若點為角終邊上一點,則;
②命題“存在,”的否定是“對于任意的,”;
③若函數(shù)在上有零點,則;
④“(且)”是“,”的必要不充分條件.
其中正確結論的個數(shù)是()
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項, , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com