【題目】已知函數(shù) .
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線(xiàn)y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.
【答案】
(1)解:f′(x)= ,f(x)的定義域是(0,+∞),
x∈(0,e)時(shí),f′(x)>0,f(x)單調(diào)遞增;
x∈(e,+∞)時(shí),f'(x)<0,f(x)單調(diào)遞減.
當(dāng)x=e時(shí),f(x)取極大值為 ,無(wú)極小值
(2)解:要證f(e+x)>f(e﹣x),即證: ,
只需證明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).
設(shè)F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),
,
∴F(x)>F(0)=0,
故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),
即f(e+x)>f(e﹣x)
(3)解:證明:不妨設(shè)x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,
由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),
又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上單調(diào)遞減,
∴2e﹣x1<x2,即x1+x2>2e,
∴ ,∴f'(x0)<0
【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的極值即可;(2)問(wèn)題轉(zhuǎn)化為證明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),設(shè)F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn .
(1)求p2的值;
(2)證明:pn> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把圓分成個(gè)扇形,設(shè)用4種顏色給這些扇形染色,每個(gè)扇形恰染一種顏色,并且要求相鄰扇形的顏色互不相同,設(shè)共有種方法.
(1)寫(xiě)出,的值;
(2)猜想 ,并用數(shù)學(xué)歸納法證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)廠(chǎng)商推出一款6吋大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)用戶(hù)(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:
女性用戶(hù) | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶(hù) | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶(hù)和男性用戶(hù)哪組評(píng)分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);
(Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶(hù)中抽取20名用戶(hù),在這20名用戶(hù)中,從評(píng)分不低于80分的用戶(hù)中任意抽取3名用戶(hù),求3名用戶(hù)中評(píng)分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校舉行“兩城同創(chuàng)”的知識(shí)競(jìng)賽答題,高一年級(jí)共有1200名學(xué)生參加了這次競(jìng)賽.為了解競(jìng)賽成績(jī)情況,從中抽取了100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì).其中成績(jī)分組區(qū)間為,,,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問(wèn)題:
(1)求的值;
(2)若成績(jī)不低于90分的學(xué)生就能獲獎(jiǎng),問(wèn)所有參賽學(xué)生中獲獎(jiǎng)的學(xué)生約為多少人;
(3)根據(jù)頻率分布直方圖,估計(jì)這次平均分(用組中值代替各組數(shù)據(jù)的平均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),圓C: ,
(1)過(guò)點(diǎn)向圓C引切線(xiàn)l,求切線(xiàn)l的方程;
(2)過(guò)點(diǎn)A作直線(xiàn) 交圓C于P,Q,且,求直線(xiàn)的斜率k;
(3)定點(diǎn)M,N在直線(xiàn) 上,對(duì)于圓C上任意一點(diǎn)R都滿(mǎn)足,試求M,N兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)廠(chǎng)商推出一款6吋大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)用戶(hù)(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:
女性用戶(hù) | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶(hù) | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶(hù)和男性用戶(hù)哪組評(píng)分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);
(Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶(hù)中抽取20名用戶(hù),在這20名用戶(hù)中,從評(píng)分不低于80分的用戶(hù)中任意抽取3名用戶(hù),求3名用戶(hù)中評(píng)分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是邊長(zhǎng)為2的菱形,平面,, .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com