【題目】已知雙曲線 =1(a>0,b>0)的左焦點為F,離心率為 .若經(jīng)過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1

【答案】B
【解析】解:設雙曲線的左焦點F(﹣c,0),離心率e= = ,c= a,
則雙曲線為等軸雙曲線,即a=b,
雙曲線的漸近線方程為y=± x=±x,
則經(jīng)過F和P(0,4)兩點的直線的斜率k= = ,
=1,c=4,則a=b=2
∴雙曲線的標準方程: ;
故選B.
【考點精析】通過靈活運用斜率的計算公式,掌握給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.

(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個單位后,得到函數(shù)的圖象關于點( ,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣ ]上的最小值是( )
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,側面底面.

(1)求證:平面平面;

(2)若,且二面角等于,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2
(2)若a+b=1,求證: + + ≥12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是(  )
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是

1)求n的值;

2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b

為事件A,求事件A的概率;

在區(qū)間內(nèi)任取2個實數(shù),求事件恒成立的概率.

查看答案和解析>>

同步練習冊答案