【題目】已知等差數(shù)列滿足,,數(shù)列的前項(xiàng)和為滿足.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若,恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ),;(Ⅱ).

【解析】

(Ⅰ)根據(jù)題設(shè)條件,列出方程組求得的值,即可得到得出數(shù)列的通項(xiàng)公式,再利用數(shù)列的遞推關(guān)系,得到數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,即可求出數(shù)列的通項(xiàng)公式;

(Ⅱ)由(Ⅰ)可得,利用乘公比錯位相減法,即可求解.

(Ⅰ)設(shè)等差數(shù)列的公差為

因?yàn)?/span>,,可得,解得,

所以

對于數(shù)列,當(dāng)時,,解得.

當(dāng)時,,,

兩式相減,得,即,

所以是以1為首項(xiàng),2為公比的等比數(shù)列,所以.

(Ⅱ)由(Ⅰ)可得.

當(dāng)時,.

當(dāng)時,,

.

兩式相減,得

,

,而時也符合該式,所以,

故題中不等式可化為.*),

當(dāng)時,不等式(*)可化為,解得;

當(dāng)時,不等式(*)可化為,此時;

當(dāng)時,不等式(*)可化為,因?yàn)閿?shù)列是遞增數(shù)列,所以,

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A.84B.56C.35D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,等邊三角形所在的平面垂直于底面, ,是棱的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)判斷直線與平面的是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC120°,ABAEED2EF,EFAB,點(diǎn)GCD中點(diǎn),平面EAD⊥平面ABCD.

1)證明:BDEG;

2)若三棱錐,求菱形ABCD的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上且位于第二象限,過點(diǎn)作直線,過點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機(jī)抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:

滿意度評分分組

合計(jì)

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根據(jù)評分,將家長的滿意度從低到高分為三個等級:

滿意度評分

評分70

70評分90

評分90

滿意度等級

不滿意

滿意

非常滿意

假設(shè)兩個年級家長的評價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分13分)

某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場調(diào)查,銷售量成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時,日銷售量為100公斤.

)求該工廠的每日利潤元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;

)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時,該工廠的利潤最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上遞增,在上遞減,求實(shí)數(shù)的值.

2))討論上的單調(diào)性;

3)若方程有兩個不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

同步練習(xí)冊答案