已知關于x的函數(shù)f(x)=數(shù)學公式x3+bx2+cx+bc,其導函數(shù)為f+(x).令g(x)=|f+(x)|,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M.
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-數(shù)學公式,試確定b、c的值:
(Ⅱ)若|b|>1,證明對任意的c,都有M>2
(Ⅲ)若M≧K對任意的b、c恒成立,試求k的最大值.

(I)解:∵f'(x)=-x2+2bx+c,由f(x)在x=1處有極值
可得
解得,或
若b=1,c=-1,則f'(x)=-x2+2x-1=-(x-1)2≤0,此時f(x)沒有極值;
若b=-1,c=3,則f'(x)=-x2-2x+3=-(x+1)(x-1)
當x變化時,f(x),f'(x)的變化情況如下表:
x(-∞,-3)-3(-3,1)1(1,+∞)
f'(x)-0+0-
f(x)極小值-12極大值
∴當x=1時,f(x)有極大值,故b=-1,c=3即為所求.

(Ⅱ)證法1:g(x)=|f'(x)|=|-(x-b)2+b2+c|
當|b|>1時,函數(shù)y=f'(x)的對稱軸x=b位于區(qū)間[-1.1]之外.
∴f'(x)在[-1,1]上的最值在兩端點處取得
故M應是g(-1)和g(1)中較大的一個,
∴2M≥g(1)+g(-1)=|-1+2b+c|+|-1-2b+c|≥|4b|>4,即M>2

證法2(反證法):因為|b|>1,所以函數(shù)y=f'(x)的對稱軸x=b位于區(qū)間[-1,1]之外,
∴f'(x)在[-1,1]上的最值在兩端點處取得.
故M應是g(-1)和g(1)中較大的一個
假設M≤2,則M=maxg{(-1),g(1),g(b)}
將上述兩式相加得:4≥|-1-2b+c|+|-1+2b+c|≥4|b|>4,導致矛盾,∴M>2

(Ⅲ)解法1:g(x)=|f'(x)|=|-(x-b)2+b2+c|
(1)當|b|>1時,由(Ⅱ)可知f'(b)-f'(±1)=b(?1)2≥0;
(2)當|b|≤1時,函數(shù)y=f'(x)的對稱軸x=b位于區(qū)間[-1,1]內(nèi),
此時M=max{g(-1),g(1),g(b)}
由f'(1)-f'(-1)=4b,有f'(b)-f'(±1)=b(?1)2≥0
①若-1≤b≤0,則f'(1)≤f'(-1)≤f'(b),∴g(-1)≤max{g(1),g(b)},
于是
②若0<b≤1,則f'(-1)≤f'(1)≤f'(b),∴g(1)≤maxg(-1),g(b)
于是
綜上,對任意的b、c都有
而當時,在區(qū)間[-1,1]上的最小值
故M≥k對任意的b、c恒成立的k的最大值為
解法2:g(x)=|f'(x)|=|-(x-b)2+b2+c|
(1)當|b|>1時,由(Ⅱ)可知M>2
(2)當|b|≤1
y=f'(x)時,函數(shù)的對稱軸x=b位于區(qū)間[-1,1]內(nèi),
此時M=max{g(-1),g(1),g(b)}
4M≥g(-1)+g(1)+2g(h)=|-1-2b+c|+|-1+2b+c|+2|b2+c|≥|-1-2b+c+(-1+2b+c)-2(b2+c)|=|2b2+2|≥2,

下同解法1
分析:(I)對函數(shù)求導,由題意可得,代入可求b,c,代入驗證,找出符合條件的值.
(II)(法1)代入整理g(x)=||-(x-b)2+b2+c|,結(jié)合|b|>1的條件判斷函數(shù)f′(x)的對稱軸與區(qū)間[-1,1]的位置關系,從而求出該函數(shù)在[-1,1]上的最大值M,則M≥f′(1),M≥f′(-1),可證
(法2)利用反證法:假設M<2,由(1)可知M應是g(-1)和g(1)中較大的一個,則有,代入課產(chǎn)生矛盾.
(III)(法1)M≥k恒成立?k≤Mmin,轉(zhuǎn)化為求M的最小值
當|b|>1,結(jié)合(II)討論
|b|≤1兩只情況討論,此時M=max{g(-1),g(1),g(b)},結(jié)合條件推理論證.
(法2)仿照法1,利用二次函數(shù)在區(qū)間[-1,1]的圖象及性質(zhì)求出M={g(-1),g(1),g(b)},求出M的最小值,
點評:本小題主要考查函數(shù)、函數(shù)的導數(shù)和不等式等基礎知識,考查綜合運用數(shù)學知識進行推理論證的能力和分類類討論的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)f(x)=-
1
3
x3+bx2+cx+bc,其導函數(shù)為f′(x).令g(x)=|f′(x)|,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M.
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-
4
3
,試確定b、c的值:
(Ⅱ)若|b|>1,證明對任意的c,都有M>2
(Ⅲ)若M≧K對任意的b、c恒成立,試求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)f(x)=-
1
3
x3
+bx2+cx+bc,如果函數(shù)f(x)在x=1處有極值-
4
3
,試確定b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函數(shù)|f(x)|的單調(diào)區(qū)間;
(Ⅱ)令t=a2-b.若存在實數(shù)m,使得|f(m)|≤
1
4
與|f(m+1)|≤
1
4
同時成立,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)f(x)=mx-1,(其中m>1),設a>b>c>1,則
f(a)
a
f(b)
b
,
f(c)
c
的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的函數(shù)f(x)=(-2a+3b-5)x+8a-5b-1.如果x∈[-1,1]時,其圖象恒在x軸的上方,則
b
a
的取值范圍是
(-∞,
3
2
)∪(3,+∞)
(-∞,
3
2
)∪(3,+∞)

查看答案和解析>>

同步練習冊答案