【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當天投籃命中率y之間的關(guān)系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)用線性回歸分析的方法求回歸方程 = x+ .
(2)預測小李該月6號打6小時籃球的投籃命中率.
.
【答案】
(1)解:根據(jù)表中數(shù)據(jù),計算 = ×(1+2+3+4+5)=3,
= ×(0.4+0.5+0.6+0.6+0.4)=0.5;
則 = = =0.01,
= ﹣ =0.5﹣0.01×3=0.47,
所以所求的回歸方程為: =0.01x+0.47;
(2)解:利用回歸方程計算x=6時, =0.47+0.01×6=0.53,
預測小李該月6號打6小時籃球的投籃命中率為0.53.
【解析】根據(jù)表中數(shù)據(jù),計算出時間x,命中率y的平均數(shù),代入公式求出 ,,從而得到所求的回歸方程,(2)將x=6代入回歸方程,可得到投籃的命中率.
科目:高中數(shù)學 來源: 題型:
【題目】如果圓(x﹣a)2+(y﹣a)2=8上總存在到原點的距離為 的點,則實數(shù)a的取值范圍是( )
A.(﹣3,﹣1)∪(1,3)
B.(﹣3,3)
C.[﹣1,1]
D.[﹣3,﹣1]∪[1,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小五、小一、小節(jié)、小快、小樂五位同學站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長:1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點.則第11行的實心圓點的個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是( )
A.56
B.60
C.120
D.140
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點的( )
A.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向左平移 個單位長度
B.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向右平移 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向左平移 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學在A處的命中率q1為0.25,在B處的命中率為q2 , 該同學選擇先在A處投一球,以后都在B處投,用ξ表示該同學投籃訓練結(jié)束后所得的總分,其分布列為:
ξ | 0 | 2 | 3 | 4 | 5 |
p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學期望Eξ;
(3)試比較該同學選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,隨機抽取了6個試銷售數(shù)據(jù),得到第i個銷售單價xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程 ;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入﹣成本)
附:回歸直線方程 中, = , = ﹣ ,其中 , 是樣本平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com