計算:5sin90°-2cos0°+
3
tan180°+cos180°.
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:根據(jù)誘導(dǎo)公式及特殊角的三角函數(shù)值即可求解.
解答: 解:5sin90°-2cos0°+
3
tan180°+cos180°=5-2+0-1=2.
點評:本題主要考查了誘導(dǎo)公式及特殊角的三角函數(shù)值的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
(1)若
BC
DA
,求y=f(x)的解析式
(2)在(1)的條件下,若
AC
BD
,求x與y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用分析法證明:(
2
+1)2
17
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=
x
0
(sint+cost•sint)dt,則y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形的兩條對角線相互垂直,求證:順次連接四邊中點的四邊形為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的每一項是它的序號的算術(shù)平方根加上序號的2倍.
(1)求這個數(shù)列的第4項與第25項.
(2)253和153是不是這個數(shù)列中的項?如果是,是第幾項?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面ABCD是等腰梯形,側(cè)面PAD是正三角形,且CD=DA=AB=1,BC=PB2=PC2=2
(1)求證:PB⊥平面PCD;
(2)求PD與平面PAB所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x
2
3

(1)求出函數(shù)的定義域
(2)判斷函數(shù)的奇偶性
(3)寫出函數(shù)的單調(diào)區(qū)間
(4)做出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱柱中,底面是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂點D1在底面ABCD內(nèi)的射影恰好為C,
求證:AD1⊥BC,若DD1與AB所成的角為60°,求面ABC1D1和面ABCD的余弦函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案