14.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ 2x+y-4≥0\\ x≤2\end{array}\right.$時,z=x+y的最小值為(  )
A.4B.3C.2D.無法確定

分析 由題意作出其平面區(qū)域,將z=3x+y化為y=-3x+z,z相當于直線y=-3x+z的縱截距,由幾何意義可得.

解答 解:由題意作出$\left\{\begin{array}{l}x-y+1≥0\\ 2x+y-4≥0\\ x≤2\end{array}\right.$的平面區(qū)域:

將z=x+y化為y=-x+z,z相當于直線y=-x+z的縱截距,
由$\left\{\begin{array}{l}{x=2}\\{2x+y-4=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即B(2,0).
當直線y=-x+z經過B時,z有最小值,此時z的最小值2+0=2;
故選:C.

點評 本題考查了簡單線性規(guī)劃,作圖要細致認真,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.$\sqrt{5}$+2與$\sqrt{5}$-2兩數(shù)的等比中項是( 。
A.1B.-1C.±1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}}\right.$,記z=ax-y(其中a>0)的最小值為f(a).若$f(a)≥\frac{3}{5}$,則實數(shù)a的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知$cos({\frac{π}{6}-θ})=\frac{{2\sqrt{2}}}{3}$,則$cos({\frac{π}{3}+θ})$=$±\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設$a=ln3,b={log_2}\sqrt{3},c={log_3}\sqrt{2}$,則( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設ω>0,函數(shù)y=sin(ωx+$\frac{π}{3}$)的圖象向右平移$\frac{4π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,則下列命題中正確的是( 。
A.若m、n都平行于平面α,則m、n一定不是相交直線
B.若m、n都垂直于平面α,則m、n一定是平行直線
C.已知α、β互相平行,m、n互相平行,若m∥α,則n∥β
D.若m、n在平面α內的射影互相平行,則m、n互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個零點,則所有零點之和為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(x+m),g(x)=loga(1-x)其中a>1.若函數(shù)F(x)=f(x)-g(x)的零點是0
(1)求m 的值及函數(shù)F(x)定義域;
(2)判斷F(x)的奇偶性,并說明理由;
(3)求使F(x)>0成立的x的集合.

查看答案和解析>>

同步練習冊答案