【題目】如圖是2019年春運(yùn)期間十二個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,給出下列4個(gè)結(jié)論
其中結(jié)論正確的是( )
A.深圳的變化幅度最小,北京的平均價(jià)格最高;
B.深圳和廈門往返機(jī)票的平均價(jià)格同去年相比有所下降;
C.平均價(jià)格從高到低位于前三位的城市為北京,深圳,廣州;
D.平均價(jià)格的漲幅從高到低位于前三位的城市為天津,西安,上海.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , 是的中點(diǎn),將沿折起,使得.
(Ⅰ)若是的中點(diǎn),求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),曲線的極坐標(biāo)方程:.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交軸于點(diǎn)(不是原點(diǎn)),過點(diǎn)的直線交曲線于A,B兩個(gè)不同的點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個(gè)正方體的平面展開圖,在這個(gè)正方體中平面ADE;平面ABF;平面平面AFN;平面平面NCF.以上四個(gè)命題中,真命題的序號是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:中,頂點(diǎn),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.
求點(diǎn)B、C的坐標(biāo);
求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*,n≥2), .
(1)求的值;
(2)是否存在一個(gè)實(shí)數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實(shí)數(shù)t;若不存在,請說明理由;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com