已知橢圓是橢圓上縱坐標(biāo)不為零的兩點(diǎn),若其中F為橢圓的左焦點(diǎn).

   (Ⅰ)求橢圓的方程;

   (Ⅱ)求線段AB的垂直平分線在y軸上的截距的取值范圍.

解:(Ⅰ)由已知,得

 

   (Ⅱ)∵A、B是橢圓上縱坐標(biāo)不為零的點(diǎn),

A、F、B三點(diǎn)共線,且直線AB的斜率存在且不為0.

又F(-1,0),則可記AB方程為并整理得

顯然△>0,設(shè)

直線AB的垂直平分線方程為

x=0,得

“=”號(hào),

,

所以所求的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過(guò)F點(diǎn)作直線交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是橢圓
x2
25
+
y2
9
=1
上一點(diǎn),焦點(diǎn)為F1、F2,∠F1PF2=
π
2
,則點(diǎn)P的縱坐標(biāo)是
±
9
4
±
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過(guò)F作斜率為k(k≠0)的直線l交橢圓于M,N兩點(diǎn),P為線段MN的中點(diǎn),設(shè)O為橢圓中心,射線OP交橢圓于點(diǎn)Q,若
OM
+
ON
=
OQ
,若存在求k的值,若不存在則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知B是橢圓E:
x2
a2
+
y2
b2
=1(a
>b>0)上的一點(diǎn),F(xiàn)是橢圓右焦點(diǎn),且BF⊥x軸,B(1,
3
2
)

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A1和A2是長(zhǎng)軸的兩個(gè)端點(diǎn),直線l垂直于A1A2的延長(zhǎng)線于點(diǎn)D,|OD|=4,P是l上異于點(diǎn)D的任意一點(diǎn),直線A1P交橢圓E于M(不同于A1,A2),設(shè)λ=
A2M
A2P
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓C1
x2
a2
+
y2
b2
=1的右焦點(diǎn),點(diǎn)P是橢圓C1上的動(dòng)點(diǎn),點(diǎn)Q是圓C2:x2+y2=a2上的動(dòng)點(diǎn).
(1)試判斷以PF為直徑的圓與圓C2的位置關(guān)系;
(2)在x軸上能否找到一定點(diǎn)M,使得
QF
QM
=e (e為橢圓的離心率)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案